Icosahedral Maps for a Multiresolution Representation of Earth Data

Mohammad Imrul Jubair ${ }^{1,}$ Usman Alim ${ }^{1,}$ Niklas Röber ${ }^{2,}$ John Clyne ${ }^{3}$ and Ali Mahdavi-Amiri ${ }^{1}$
${ }^{1}$ University of Calgary, ${ }^{2}$ German Climate Computing Centre, ${ }^{3}$ National Center for Atmospheric Research

INTRODUCTION

- Icosahedral Non-hydrostatic (ICON):
- A 3D Earth model used for numerical weather prediction.
- Earth surface is descritized and data is assigned.
- Jointly developed by the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD).

ICON is designed via Discrete Global Grid System (DGGS).

Base
Icosahedron

- ICON is designed via Discrete Global Grid System (DGGS).

Base
Icosahedron

Refinement

- ICON is designed via Discrete Global Grid System (DGGS).

Primal Cells

Base
Icosahedron

Refinement

Spherical Projection

For improved numerical solution, different data is assigned at different locations of the primal cell (triangle).

- For improved numerical solution, different data are assigned at different locations of the primal cell (triangle).

Centroids

2 Vertices

- For improved numerical solution, different data is assigned at different locations of the primal cell (triangle).

2 Vertices
Centroids of hexagons (dual of primal cell)

- For improved numerical solution, different data is assigned at different locations of the primal cell (triangle).

RESEARCH GOAL

Research Problem

1 Visualization

- Interactive exploration of ICON demands efficient use of-
o Memory.
- I/O bandwidth.
- But, ICON data is high resolution.
- How can we improve visualization?

One solution is:
A multiresolution representation of ICON.

- Level-of-Detail Rendering.

Research Problem

2 Data Structure

- ICON is represented as Polygon Soup (face list).
- No explicit neighborhood information.

An Example:

triangle soup (T)

Research Problem

2 Data Structure

- Multiresolution needs neighbor vertices to perform its operations, e.g. -
- Convolution
- Downsample and upsample

But, soup makes it expensive.

- Retrieving neighbors from the soup for every vertex.
- How can we make these operations faster?

Research Goal

Mapping unstructured soup into a structured 2D representation, we call it 'Icosahedral maps'.

Polygon soup

Research Goal

2 Mapping works for all three cell-types.

Research Goal

LoD representation of Earth data by applying a multiresolution scheme on the icosahedral maps.

METHODOLOGY

Icosahedral Maps

Given one triangle from a triangle soup, a hexagonal fan finds its hexagonal neighbors of a vertex and store the information in a 2D array.

Hexagonal Fan

- An example :

Triangle soup

- An example :

Hexagonal Fan

- This traversal scheme will be used for capturing information for three-types of cell centroids of ICON.

Mapping Technique

1 Mapping Centroids of Hexagons:

- Vertices of the primal cells

2D array

3D Earth

Mapping Technique

1 Mapping Centroids of Hexagons:

- Initial triangle vertices.

2D array

3D Earth

Mapping Technique

1 Mapping Centroids of Hexagons:

- Hexagonal fan sweeps to fill up array.

Mapping Technique

1 Mapping Centroids of Hexagons:

- One array extract one diamond on Earth.

Mapping Technique

1 Mapping Centroids of Hexagons:

- Associated data is also extracted.

2D array

Mapping Technique

2 Mapping Centroids of Quads:

- Edge midpoints of the primal cells

Mapping Technique

2 Mapping Centroids of Quads:

- Edge midpoints of the primal cells

Mapping Technique

2 Mapping Centroids of Quads:

- Vertices stored as quad soup

quad soup

Mapping Technique

2 Mapping Centroids of Quads:

- Three directional edges

2 Mapping Centroids of Quads:

- Three directional edges

2 Mapping Centroids of Quads:

- Three directional edges

Mapping Technique

2 Mapping Centroids of Quads:

- Modified hexagonal fan.

Mapping Technique

2 Mapping Centroids of Quads:

- Modified hexagonal fan.
- Example:

Mapping Technique

2 Mapping Centroids of Quads:

- Modified hexagonal fan.
- Example:

Mapping Technique

2 Mapping Centroids of Quads:

- Modified hexagonal fan.
- Example:

quad soup

Mapping Technique

2 Mapping Centroids of Quads:

- Modified hexagonal fan.
- Example:

Mapping Technique

2 Mapping Centroids of Quads:

- Stored in array.

Mapping Technique

2 Mapping Centroids of Quads:

- Stored in array.

2D array

Mapping Technique

2 Mapping Centroids of Quads:

- At polar vertex :

Mapping Technique

2 Mapping Centroids of Quads:

- Need to access adjacent diamond.

Mapping Technique

2 Mapping Centroids of Quads:

- Minor irregularity at border.
- Topology is preserved.

Mapping Technique

2 Mapping Centroids of Quads:

- Along other directions:

C 1

Mapping Technique

3 Mapping Centroids of Triangle:

- The primal cells.

Mapping Technique

3 Mapping Centroids of Triangle:

- Connecting vertices with centroids.
- Splitting into triangle.

new triangle
soup

Mapping Technique

3 Mapping Centroids of Triangle:

- Data at the vertices are assigned.
new triangle
soup

Mapping Technique

3 Mapping Centroids of Triangle:

- Fan sweeping:

Mapping Technique

3 Mapping Centroids of Triangle:

- Fan sweeping:

Mapping Technique

3 Mapping Centroids of Triangle:

- Array has null entries.

SUMMARY OF ICOSAHEDRAL MAPS

Mapping to a 2D structure

Mapping technique extract a diamond.

For entire Earth: total 10 diamonds.

Diamonds

For entire Earth: total 10 diamonds. [for every cell-types]

METHODOLOGY

Multiresolution

Discrete Hexagonal Wavelet

- Hexagonal Wavelet bases [Cohen \& Schlenker '93]

A linear approximation of the data is obtained by linear box spline.

$$
f(\mathbf{x})=\sum_{\mathbf{k}}^{\text {data }} \stackrel{\text { dax spline }}{\text { bol }} \overbrace{\varphi(\mathbf{x}-\mathbf{L k})}
$$

- Coarse-to-fine reconstruction:

$$
f(\mathbf{x})=\sum_{\mathbf{k}}^{\text {coarse }} C[\mathbf{k}] \varphi(\mathbf{x} / 2-\mathbf{L k})+\sum_{i=1}^{3} \sum_{\mathbf{k}}^{\text {details }} \sum_{D_{i}[\mathbf{k}]}^{\underbrace{\psi_{i}(\mathbf{x} / 2-\mathbf{L k})}_{\text {wavelet function }} .} .
$$

MR Scheme

- Sub-band coding scheme:

Scheme

- Sub-band coding scheme:
- Operations:

Convolution with filters

MR Scheme

- MR on icosahedral maps:
coarse

fine

MR Scheme

- MR on icosahedral maps:
coarse

fine

details

Compression

- Removing details with less energy
- Quantile threshold:
- Choose a threshold on frequency distribution.

- Removing details with less energy
- Quantile threshold:
- Choose a threshold on frequency distribution.
- Keep the top percentages.

RESULTS

Visual Results: ICON Data

INPUT
 Hexagonal cells

Visual Results: ICON Data

OUTPUT of ICOSAHEDRAL MAPS

Triangle Grid
where data is at
the vertices of triangles

MR on ICOSAHEDRAL MAPS $>$

Visual Results: ICON Data

Coarse Level

Visual Results: ICON Data

MR on ICOSAHEDRAL MAPS \rangle

Reconstructed (Threshold = 90\%)

Visual Results: ICON Data

- Other cells :

Icosahedral Maps:
Input cell

Triangle grid

MR:
Coarse level

Visual Results: Synthetic Data

- We focused only on the centroids of the primal cells (triangles).
- Challenges:
- number of EO vertices is not 12.
- no stopping conditions for fan sweeping.

Hurricane data

ICON Data (slice)

Hurricane data

ICON Data (slice)

ICON Data (slice)

Fine

Reconstructed

Reconstructed (90\%)

Quantitative Results

- Quality vs. Compression: (ICON Data)

Quantitative Results

- Quality vs. Compression: (Synthetic Data)

- KD - tree.
- KNN -search.
- 1-to-3 refinement parallel.
- Hexagonal fan searches locally.

1-to-3 refinement

CONCLUSION

Contribution

Icosahedral Maps:

Maps connectivity information for all three cell-types into to a structured grid representation.

Icosahedral Maps:

Maps connectivity information for all three cell-types into to a structured grid representation.

- Neighboring information is easy to access simply using indexing. Operations involved in MR is straightforward.
o Convolution
o Downsample and Upsample
- GPU friendly because our 2D representation -
\checkmark is easily fit into the GPU using textures.
\checkmark allows to use barycentric interpolation for all types of data.

structured 2D array

Contribution

Level-of-Detail representation of

Earth data:

- Applying a hexagonal wavelet scheme on the icosahedral maps to render scalar data at a coarser resolution. \checkmark save time
- compression via thresholding.
\checkmark save space

Next Plan

- GPU Implementation.
- Mapping the whole slice into one single array.
o This can be done by taking advantage of hexagonal fan traversal.

Conclusion

- Our pipeline:

Conclusion

- Question:

- Why does ICON come with soup structure?
- Is 2D structure possible? Any problem for simulation?

THANKS QUESTION?

MORE RESULTS

Hurricane Data

Hurricane Data

$\mathrm{HD}(\mathrm{CP})^{2}$ Data

HD(CP) ${ }^{2}$ Data

