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Background

Sampling Lattices

Generated by taking integer combinations of columns of L, i.e. L = Lk where k ∈ Zs.
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Background

Function Approximation

Shift-Invariant Spaces

V(Lh, ϕ) :=

{
g(x) =

∑

n∈Zs

c[n]ϕh,n(x) : c ∈ l2(Zs)

}
, ϕh,n(x) := ϕ(

x

h
− Ln).

Find fapp ∈ V(Lh, ϕ) that attempts to minimize the L2-error ‖f − fapp‖.
ϕ can be sinc-like (infinite support) or spline-like (compact support).
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Background Error Quantification
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Background Error Quantification

Lattice Isotropy (2D)

For isotropically bandlimited functions, the optimal sampling lattice L is the one whose dual
L◦ is the optimal sphere-packing lattice [Petersen and Middleton, 1962, Lu et al., 2009].
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Background Error Quantification

Lattice Isotropy (2D)

For isotropically bandlimited functions, the optimal sampling lattice L is the one whose dual
L◦ is the optimal sphere-packing lattice [Petersen and Middleton, 1962, Lu et al., 2009].

Cartesian (78.5% efficient) hexagonal (90.6% efficient)
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Background Error Quantification

Lattice Isotropy (3D Cubic Lattices)

The FCC lattice is the optimal sphere-packing lattice [Conway and Sloane, 1999].

The BCC lattice is the optimal sampling lattice.

CC (52%) BCC (68%) FCC (74%)
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Background Error Quantification

Error Kernel

Measurement Model:
Discrete measurements made according to c[n] =

〈
f, ϕ̃h,n

〉
.

(ϕ̃ is an analysis function)

Fourier Error Kernel (extension of [de Boor et al., 1994, Blu and Unser, 1999])

‖f − fapp‖2 =

∫

Rs

∣∣f̂(ω)
∣∣2E(hω)dω,

where E(ω) := 1−
∣∣ϕ̂(ω)

∣∣2

Âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ Âϕ(ω)
∣∣ ˆ̃ϕ(ω)− ˆ̊ϕ(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

.

aϕ[n]↔ Âϕ(ω) is the autocorrelation sequence of ϕ.

ϕ̊ is the biorthogonal dual of ϕ.
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Background Error Quantification

Error Kernel

Fourier Error Kernel

E(ω) := 1−
∣∣ϕ̂(ω)

∣∣2

Âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ Âϕ(ω)
∣∣ ˆ̃ϕ(ω)− ˆ̊ϕ(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

.

For an orthogonal projection, ϕ̃ = ϕ̊ and Eres(ω) = 0.

Emin(ω) = O(‖ω‖2k) where k is the approximation order provided by ϕ,
i.e. ‖f − fapp‖ = O(hk).

For suboptimal approximations (e.g. when f is point-sampled), the goal is to design ϕ̃ so
that Eres = O(‖ω‖2k) (e.g. interpolation, quasi-interpolation).
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Background Comparison of 3D Spaces

Minimum Error Comparison: 3D Cubic Lattices

Approximating a jinc function. Nearest neighbour on CC, BCC, and FCC. Trilinear and
tricubic B-spline on CC vs linear and quintic box spline on BCC.

Voronoi cells of BCC and FCC lattices

support of linear box spline on BCC (image courtesy of
[Entezari et al., 2008])

1.3. SHIFT-INVARIANT SPACES ON THE CUBIC LATTICES 23

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

0.0625 0.125 0.25 0.5 1

10−6

10−5

10−4

10−3

10−2

10−1

100

(a) Oversampled

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Undersampled

Figure 1.3: The variation of
√
η(h) for a variety of approximation spaces on the cubic

lattices. For the first-order Voronoi spline on FCC, τ = h
3√2

. For each lattice, η(h) is

computed by numerically integrating the closed form expression for Emin(ω). Data for the
critically sampled case (h = 1) is also presented in Table 1.2.

√
κ which can be evaluated in closed form (Table 1.2). Asymptotically, the non-Cartesian

Voronoi spline spaces are marginally better that the Cartesian Voronoi spline space. A sim-

ilar trend is observed in the undersampled regime as well. Although not demonstrated here,

we expect that higher-order Voronoi spline spaces would only amplify this improvement.

The second-order trilinear B-spline space V(Z3
h, B1) is asymptotically a little better than

the linear box spline space V(Bh, MΘ). However, this trend is reversed in the neighborhood

around h = 1 where the BCC lattice outperforms owing to its greater isotropy. This is quite

remarkable indeed since the linear box spline reconstruction, owing to its smaller support

as compared to the trilinear B-spline, only needs to access half as many coefficients. When

k = 4, the BCC box spline space V(Bh, MΘ2 ) has a distinct advantage over the Cartesian

space V(Z3
h, B3). Again, this is noteworthy since a quintic box spline approximation needs to

access half as many coefficients as its Cartesian counterpart. Furthermore, the improvement

exists in the undersampled and oversampled regimes alike.

The advantage of the BCC lattice over the CC lattice has also been demonstrated em-

pirically for the critically sampled case [23, 25, 26]. However, to the best of our knowledge,

quantitative measures such as the ones listed in Table 1.2 have not been explored before.

Although the BCC box spline spaces are spanned by more compact kernels, this does not

Usman R. Alim, VISAGG Operator Discretization in Shift-Invariant Spaces, 11/33



Background Comparison of 3D Spaces

Minimum Error Comparison: 3D Cubic Lattices

Approximating a jinc function. Nearest neighbour on CC, BCC, and FCC. Trilinear and
tricubic B-spline on CC vs linear and quintic box spline on BCC.

Voronoi cells of BCC and FCC lattices

support of linear box spline on BCC (image courtesy of
[Entezari et al., 2008])

1.3. SHIFT-INVARIANT SPACES ON THE CUBIC LATTICES 23

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

0.0625 0.125 0.25 0.5 1

10−6

10−5

10−4

10−3

10−2

10−1

100

(a) Oversampled

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Undersampled

Figure 1.3: The variation of
√
η(h) for a variety of approximation spaces on the cubic

lattices. For the first-order Voronoi spline on FCC, τ = h
3√2

. For each lattice, η(h) is

computed by numerically integrating the closed form expression for Emin(ω). Data for the
critically sampled case (h = 1) is also presented in Table 1.2.

√
κ which can be evaluated in closed form (Table 1.2). Asymptotically, the non-Cartesian

Voronoi spline spaces are marginally better that the Cartesian Voronoi spline space. A sim-

ilar trend is observed in the undersampled regime as well. Although not demonstrated here,

we expect that higher-order Voronoi spline spaces would only amplify this improvement.

The second-order trilinear B-spline space V(Z3
h, B1) is asymptotically a little better than

the linear box spline space V(Bh, MΘ). However, this trend is reversed in the neighborhood

around h = 1 where the BCC lattice outperforms owing to its greater isotropy. This is quite

remarkable indeed since the linear box spline reconstruction, owing to its smaller support

as compared to the trilinear B-spline, only needs to access half as many coefficients. When

k = 4, the BCC box spline space V(Bh, MΘ2 ) has a distinct advantage over the Cartesian

space V(Z3
h, B3). Again, this is noteworthy since a quintic box spline approximation needs to

access half as many coefficients as its Cartesian counterpart. Furthermore, the improvement

exists in the undersampled and oversampled regimes alike.

The advantage of the BCC lattice over the CC lattice has also been demonstrated em-

pirically for the critically sampled case [23, 25, 26]. However, to the best of our knowledge,

quantitative measures such as the ones listed in Table 1.2 have not been explored before.

Although the BCC box spline spaces are spanned by more compact kernels, this does not

Usman R. Alim, VISAGG Operator Discretization in Shift-Invariant Spaces, 11/33



Background Comparison of 3D Spaces

Minimum Error Comparison: 3D Cubic Lattices

Approximating a jinc function. Nearest neighbour on CC, BCC, and FCC. Trilinear and
tricubic B-spline on CC vs linear and quintic box spline on BCC.

Voronoi cells of BCC and FCC lattices

support of linear box spline on BCC (image courtesy of
[Entezari et al., 2008])

1.3. SHIFT-INVARIANT SPACES ON THE CUBIC LATTICES 23

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

0.0625 0.125 0.25 0.5 1

10−6

10−5

10−4

10−3

10−2

10−1

100

(a) Oversampled

h

V(Z3
h, B0)

V(Bh, V B
0 )

V(Fτ , V
F
0 )

V(Z3
h, B1)

V(Bh, MΘ)
V(Z3

h, B3)
V(Bh, MΘ2)

1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Undersampled

Figure 1.3: The variation of
√
η(h) for a variety of approximation spaces on the cubic

lattices. For the first-order Voronoi spline on FCC, τ = h
3√2

. For each lattice, η(h) is

computed by numerically integrating the closed form expression for Emin(ω). Data for the
critically sampled case (h = 1) is also presented in Table 1.2.

√
κ which can be evaluated in closed form (Table 1.2). Asymptotically, the non-Cartesian

Voronoi spline spaces are marginally better that the Cartesian Voronoi spline space. A sim-

ilar trend is observed in the undersampled regime as well. Although not demonstrated here,

we expect that higher-order Voronoi spline spaces would only amplify this improvement.

The second-order trilinear B-spline space V(Z3
h, B1) is asymptotically a little better than

the linear box spline space V(Bh, MΘ). However, this trend is reversed in the neighborhood

around h = 1 where the BCC lattice outperforms owing to its greater isotropy. This is quite

remarkable indeed since the linear box spline reconstruction, owing to its smaller support

as compared to the trilinear B-spline, only needs to access half as many coefficients. When

k = 4, the BCC box spline space V(Bh, MΘ2 ) has a distinct advantage over the Cartesian

space V(Z3
h, B3). Again, this is noteworthy since a quintic box spline approximation needs to

access half as many coefficients as its Cartesian counterpart. Furthermore, the improvement

exists in the undersampled and oversampled regimes alike.

The advantage of the BCC lattice over the CC lattice has also been demonstrated em-

pirically for the critically sampled case [23, 25, 26]. However, to the best of our knowledge,

quantitative measures such as the ones listed in Table 1.2 have not been explored before.

Although the BCC box spline spaces are spanned by more compact kernels, this does not

Usman R. Alim, VISAGG Operator Discretization in Shift-Invariant Spaces, 11/33



Gradient Estimation

Outline

1 Background
Error Quantification
Comparison of 3D Spaces

2 Gradient Estimation
Two-Stage Approximation Model
Revitalization via Error Quantification

3 Poisson’s Equation

4 Conclusion

Usman R. Alim, VISAGG Operator Discretization in Shift-Invariant Spaces, 12/33



Gradient Estimation

Motivation

Shading in volume visualization, poor gradients lead to poor visuals.

central differencing

orthogonal projection
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Gradient Estimation

Motivation

Shading in volume visualization, poor gradients lead to poor visuals.

central differencing orthogonal projection
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Gradient Estimation

Overview

Problem

Given samples f [n] = f(hLn) of f , estimate the gradient ∇f .

Summary of Approach

Seek independent approximations f iapp ≈ ∂if such that f iapp ∈ V(Lh, ϕ).

Discrete filtering:

f iapp(x) =
1

h

∑

n

(f ∗ qi)[n]ϕh,n(x).

First approximate f in an auxiliary space V(Lh, ψ), then project the derivative of the
auxiliary approximation to the target space V(Lh, ϕ).
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Gradient Estimation Two-Stage Approximation Model

Two-stage Approximation Model

~

~

~

n

qi[n] = ( p1︸︷︷︸
Interp.

∗ d̊i︸︷︷︸
Proj.

)[n]

1 p1[·]↔ P̂1(ω) =(∑
k ψ(Ln) exp(−2πıωTk)

)−1
.

2 d̊i[n] :=
〈
∂iψ, ϕ̊1,n

〉
.

Filters are expensive!
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Gradient Estimation Two-Stage Approximation Model

Results: Trilinear Interpolation (CC)

2.6. NOTES 45

0.05, 72.27, 73.86

(a) ε-cd

0.37, 72.47, 73.52

(b) 4-cd

0.09, 72.40, 73.52

(c) qc

0.05, 69.72, 71.54

(d) ε-CD

0.20, 68.85, 70.65

(e) OPT16

0.07, 69.96, 71.61

(f) NQ

Figure 2.7: Carp data set downsampled to a 160×160×160 CC grid (a-c) and a 126×126×
252 BCC grid (d-f) and prefiltered appropriately for interpolation filters on the respective
grids. Isosurface reconstructed and shaded using tricubic B-spline interpolation on CC and
quintic box spline interpolation on BCC. The timing data (in seconds) indicates the normal
computation time, the scalar interpolation time and the total render time respectively. All
images were rendered at a resolution of 512 × 512.

(a) 2-cd (b) ll (c) ql

Figure 2.8: An isosurface of the high resolution bunny data set. Trilinear interpolation is
used for both the scalar data and the gradient.
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Gradient Estimation Revitalization via Error Quantification

A More Flexible Approach

Problem

Given samples f [n] = f(hLn) of f , estimate the gradient ∇f .

Summary of Approach

Seek independent approximations f liapp ≈ (∇f) · li such that f liapp ∈ V(Lh, ϕi), where

ϕi(x) := ϕ(x− li
2 ) and li is a principal direction.

Discrete filtering:

f liapp(x) =
1

h

∑

n

(f ∗ qi)[n]ϕ(xh − li
2 − Ln).

Use the error kernel for derivatives to design filters that can be used on the fly.
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Gradient Estimation Revitalization via Error Quantification

Error Quantification

Error Kernel for Derivatives (extension of [Condat and Möller, 2011])

Eli(ω) := Emin(ω) + Âϕ(ω)
∣∣ Q̂i(ω)

2πıli
Tω
− ˆ̊ϕ(ω) exp(πıli

Tω)
∣∣2

︸ ︷︷ ︸
E

li
res(ω)

.

qi is applied to the samples of f .

Optimality criterion:
Eli

res(ω) = O(‖ω‖2k),
where k is the approximation order.
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Gradient Estimation Revitalization via Error Quantification

Interpolative Model: qi[n] = (p ∗ di)[n]

f(x)

sampling on L

f [n]
p

int. prefilter

d1

dir. der. filter

ϕ(x− l1/2)

reconstruction

d2 ϕ(x− l2/2)

d3 ϕ(x− l3/2)

f l1app

f l2app

f l3app

∑
i f

li
appl

i

gradient estimation

(∇f)app(x)

ϕ(x)

scalar reconstruction

fapp(x)
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Gradient Estimation Revitalization via Error Quantification

Fourth-order FIR Filters

CC

BCC
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Gradient Estimation Revitalization via Error Quantification

Tricubic B-spline (CC) vs. Quintic Box Spline (BCC)

Centered Shifted

CC
pFIR, 24.14◦, 2.11 pFIR-s, 11.53◦, 1.15

BCC
P-OPT26, 18.10◦, 1.96 P-FIR-s, 8.7◦, 1.03

Mean angular and magnitude errors are indicated
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Poisson’s Equation

Motivation

Surface reconstruction as a Poisson problem.

∆χM = ~∇ · ~V
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Poisson’s Equation

Homogeneous Poisson Equation

Problem

∆V = f in Cs,
V = 0 on ∂Cs.

Given lattice samples of f inside Cs, approximate V .

Analytic Solution

−Ṽ [m] =
f̃ [m]

π2‖m‖2 where m ∈ Zs
+.

Solution operator: ∆−1 ⇔ (π2‖m‖2)−1.

V can be extended so that it is Ps-periodic, where Ps := [−1, 1]s.
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Poisson’s Equation

Key Observations

Seek an approximation Vapp ∈ V(Lh, ϕp).

Periodic generator: ϕp(x) :=
∑

m∈Zs ϕ(x− 2
hm).

Finite summation:

Vapp(x) =
∑

xj∈Ph

c[xj ]ϕp(
x− xj

h
).

Dirichlet boundary conditions can be imposed by requiring that c[·] be odd.
70 CHAPTER 4. THE POISSON EQUATION
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Figure 4.2: 1D illustration of the periodization operation defined by (4.14): ϕ(x) = β3(x)
and h = 0.2.

It is easy to verify that, with this definition of ϕp, Vapp is also Ps-periodic. Even though

we are only interested in the behavior of Vapp inside Cs, extending Vapp to the entire domain

Ps using (4.13) allows us to use the Fourier domain error kernel proposed by Jacob et.

al [JBU02] to quantify the approximation error ‖V − Vapp‖L2(Ps).

Another simplification is in order here. Since the solution V to the Poisson problem (4.2)

is odd with respect to each variable, we look for an approximate solution Vapp ∈ V(Lh,ϕp)

that is also odd in each variable. This can be achieved by setting the boundary coefficients

to zero and by requiring that the resulting sequence be odd. With c[xj ] = 0 for xj ∈ Bh,

the approximation (4.13) simplifies to

Vapp(x) =

2sN∑

j=1

c[xj ]ϕp(
x − xj

h
). (4.15)

If the generator ϕ is even and the sequence c[·] is odd, the resulting approximation Vapp will

also be odd. This can be easily verified by inspecting the Fourier series coefficients of Vapp.

Using the Poisson summation formula (see (1.4) on page 3), the Fourier series coefficients

V̂app[·] are given by

V̂app[m] = ϕ̂(
h

2
m)

2sN∑

j=1

c[xj ] exp(−ıπm · xj), where m ∈ Zs. (4.16)

Since the coefficient sequence c[·] is odd, the summation in (4.16) can be simplified to yield

V̂app[m] = ϕ̂(
h

2
m)(2ı)sC̃[m], (4.17)

where C̃[m] denotes the multidimensional discrete sine transform (MDST) of the sequence

h = 0.2
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Poisson’s Equation

Key Observations

Seek an approximation Vapp ∈ V(Lh, ϕp).
Periodic generator: ϕp(x) :=

∑
m∈Zs ϕ(x− 2

hm).
Finite summation:

Vapp(x) =
∑

xj∈Ph

c[xj ]ϕp(
x− xj

h
).

Dirichlet boundary conditions can be imposed by requiring that c[·] be odd.

4.2. PRELIMINARIES 69

(1, 1)

(−1, −1)

(a) Cartesian

(1, 1)

(−1, −1)

(b) Quincunx

Figure 4.1: Illustration of the point set Ph on the two dimensional Cartesian (L =
(

1 0
0 1

)
,

h = 1
8) and Quincunx (L =

(
1 −1
1 1

)
, h = 1

10) lattices. The interior points (•) belong to the
set Ih while the extended boundary points (◦) belong to Bh.

We denote the interior samples of f as f [xj ] := f(xj) where xj ∈ Ih. Note that f [xj ]

only needs to be known in Cs
o (j ∈ {1, . . . , N}), the other samples can be inferred from

oddity.

We wish to use the samples of f to seek an approximation Vapp of the function V that

solves the Poisson equation (4.2). Since V is a periodic function, we follow the recipe of

Jacob et al. [JBU02] and seek an approximation that lies in a space generated by a periodic

reconstruction function. Specifically, we are interested in the case where Vapp lies in the space

V(Lh,ϕp) := spanxj∈Ph
{ϕp(

x−xj

h )} that is spanned by the scaled and translated versions of

a periodic function ϕp. Our sought-after approximation is given by

Vapp(x) =
∑

xj∈Ph

c[xj ]ϕp

(x − xj

h

)
, (4.13)

where c[xj ] is an unknown coefficient sequence defined on the point set Ph that is to be

determined from the samples of f . The function ϕp is a periodized version of a generating

function ϕ (Figure 4.2) and is defined as

ϕp(x) :=
∑

m∈Zs

ϕ
(
x − 2

h
m
)
. (4.14)

Samples inside Ps
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Poisson’s Equation

Solution Methodology

Discrete filtering: c[xj ] = (f~q)[xj ],
and q[·]↔ Q̂(ω) is a suitable discretization of ∆−1 ↔ (−4π2‖ω‖2)−1.

Error Quantification (extension of [Jacob et al., 2002])

The error ‖V − Vapp‖L2(Ps) can be predicted through

E(ω) = Emin(ω) + Âϕ(ω)
∣∣4π2‖ω‖2Q̂(ω) + ˆ̊ϕ(ω)

∣∣2
︸ ︷︷ ︸

Emod(ω)

.
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Poisson’s Equation

Interpolative Model: Q̂(ω) =
P̂ (ω)

Λ̂(ω)

Asymptotically optimal:
Emod(ω) = O(‖ω‖2k) as long as Λ̂(ω) = −4π2‖ω‖2 +O(‖ω‖k+2).

On CC and BCC, we can use a 1D filter along the principal directions.

CC BCC

Fourth-order 1D Laplacian filter: [− 1
12 ,

4
3 ,−5

2 ,
4
3 ,− 1

12 ]
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Poisson’s Equation

3D Results: V (x) := sin(12π sin(πx1) sin(πx2) sin(πx3))
4.5. NUMERICAL EXPERIMENTS 87
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Figure 4.5: Comparison of 3D approximation schemes. The asymptotic approximation order
(as determined from the last two data points) is indicated.

3D

We also compared the approximation capabilities of the CC and BCC lattices using the

tensor-product extensions of the 1D filters listed in Table 4.1 (CC), and the non-separable

3D filters listed in Table 4.2 (BCC). We used a 3D version of the synthetic test function

V as defined in (4.45). Our results are shown in Figure 4.5. Like the 2D experiments, the

nearest-neighbor scheme is obtained by the combining the second-order filter obtained from

an interpolative model, with the corresponding first-order Voronoi spline.

As expected, the Voronoi splines (B0
p on CC and V 0

H,p on BCC) exhibit a first-order

convergence, the trilinear B-spline B1
p on CC and the linear box spline ϑ2

p on BCC have a

second-order convergence, while the tricubic B-spline B3
p on CC and the quinitic box spline

ϑ4
p on BCC reveal a fourth-order convergence rate. In terms of the L2-error, the BCC lattice

outperforms across the board. The approximation gain also becomes more pronounced as

the order increases. As we saw in 2D, owing to the higher order of the first-stage space, the

quasi-interpolative model reduces the error considerably. These results are also in agreement

with our earlier comparison of these spaces (see Figure 1.3 on page 23). The only exception

is the second-order case where the interpolative BCC model has a slight edge of its CC

counterpart.

The L∞ error decay also follows a similar trend. However, for the second-order spaces,
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Poisson’s Equation

Surface Reconstruction Results

paper1284 / Poisson Surface Reconstruction on the Body-Centered Cubic Lattice 9

Original Poisson

BCC BCC Shifted

BCC4 BCC4 Shifted

Cartesian Cartesian Shifted

Figure 3: A set of reconstructions on a 1283 Cartesian grid,
50 × 50 × 100 BCC grid or an oct-tree depth of 7. Param-
eters were chosen as λ1 = 1 × 102 and λ2 = 1 × 10−4.
Comparing between the Cartesian and BCC reconstruction
spaces, the BCC lattice seems to consistently outperform the
Cartesian lattice beyond a resolution of 1283, moreover, the
advantage of shifting the reconstruction space is apparent,
specifically around the teeth and lips of the model.

Noisy Point-set Screened Poisson

BCCS λ2 = 5×10−5 BCCS λ2 = 5×10−4

Figure 4: Varying the smoothing parameter λ2 allows us to
smooth our noise from practical data sets (λ1 = 1 × 102).
The Screened Poisson method is able to more faithfully re-
construct the center hole of the Anchor model. Our method,
however, is unable to infer the importance of the samples on
the interior of the Anchor.

break down. Additionally, the choice of λ1, the compactness
constraint, didn’t seem to effect the solution much, it’s only
effect was on the choice of the parameter λ2. That is, when
λ1 was large, λ2 had to be large to obtain similar smooth
solutions.

The parameterized nature of our solution allows us to con-
trol the degree to which the initial data are smoothed. How-
ever, this also makes it difficult to conclusively compare
methods. More investigation and exploration of the param-
eter space is required. Moreover, there also appears to be a
point at which choosing λ2 to be too small introduces alias-
ing artifacts.

6. Conclusion

We have shown that reconstruction space can play a signif-
icant role in the fidelity of surface reconstruction. From the
optimality argument, it is not surprising to see that function
spaces defined over the BCC lattice tend to reconstruct more
details at equivalent resolutions when compared to those de-
fined over the Cartesian lattice. Furthermore, reconstructing
within shifted spaces seems to better reconstruct higher fre-
quency details. However, a more complete analysis is re-
quired for parameter selection between the two lattices. This

submitted to EUROGRAPHICS 2014.
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break down. Additionally, the choice of λ1, the compactness
constraint, didn’t seem to effect the solution much, it’s only
effect was on the choice of the parameter λ2. That is, when
λ1 was large, λ2 had to be large to obtain similar smooth
solutions.

The parameterized nature of our solution allows us to con-
trol the degree to which the initial data are smoothed. How-
ever, this also makes it difficult to conclusively compare
methods. More investigation and exploration of the param-
eter space is required. Moreover, there also appears to be a
point at which choosing λ2 to be too small introduces alias-
ing artifacts.

6. Conclusion

We have shown that reconstruction space can play a signif-
icant role in the fidelity of surface reconstruction. From the
optimality argument, it is not surprising to see that function
spaces defined over the BCC lattice tend to reconstruct more
details at equivalent resolutions when compared to those de-
fined over the Cartesian lattice. Furthermore, reconstructing
within shifted spaces seems to better reconstruct higher fre-
quency details. However, a more complete analysis is re-
quired for parameter selection between the two lattices. This

submitted to EUROGRAPHICS 2014.

[Kazhdan et al., 2006]
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Figure 3: A set of reconstructions on a 1283 Cartesian grid,
50 × 50 × 100 BCC grid or an oct-tree depth of 7. Param-
eters were chosen as λ1 = 1 × 102 and λ2 = 1 × 10−4.
Comparing between the Cartesian and BCC reconstruction
spaces, the BCC lattice seems to consistently outperform the
Cartesian lattice beyond a resolution of 1283, moreover, the
advantage of shifting the reconstruction space is apparent,
specifically around the teeth and lips of the model.
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Figure 4: Varying the smoothing parameter λ2 allows us to
smooth our noise from practical data sets (λ1 = 1 × 102).
The Screened Poisson method is able to more faithfully re-
construct the center hole of the Anchor model. Our method,
however, is unable to infer the importance of the samples on
the interior of the Anchor.

break down. Additionally, the choice of λ1, the compactness
constraint, didn’t seem to effect the solution much, it’s only
effect was on the choice of the parameter λ2. That is, when
λ1 was large, λ2 had to be large to obtain similar smooth
solutions.

The parameterized nature of our solution allows us to con-
trol the degree to which the initial data are smoothed. How-
ever, this also makes it difficult to conclusively compare
methods. More investigation and exploration of the param-
eter space is required. Moreover, there also appears to be a
point at which choosing λ2 to be too small introduces alias-
ing artifacts.

6. Conclusion

We have shown that reconstruction space can play a signif-
icant role in the fidelity of surface reconstruction. From the
optimality argument, it is not surprising to see that function
spaces defined over the BCC lattice tend to reconstruct more
details at equivalent resolutions when compared to those de-
fined over the Cartesian lattice. Furthermore, reconstructing
within shifted spaces seems to better reconstruct higher fre-
quency details. However, a more complete analysis is re-
quired for parameter selection between the two lattices. This

submitted to EUROGRAPHICS 2014.
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Conclusion

Summary

Gradient Estimation

Consistent gradient reconstruction — asymptotically optimal.

Interpolative model.

Two-stage framework — Order of ψ ≥ order of ϕ.

Easy extension to other lattices and dimensions.

Other Operators

General error-kernel formulation for the discretization of shift-invariant operators.

Consistent approximations that respect the order provided by ϕ.

Usman R. Alim, VISAGG Operator Discretization in Shift-Invariant Spaces, 32/33


	Background
	Error Quantification
	Comparison of 3D Spaces

	Gradient Estimation
	Two-Stage Approximation Model
	Revitalization via Error Quantification

	Poisson's Equation
	Conclusion

