A Fast Fourier Transform with Rectangular Output on the BCC and FCC Lattices

Usman R. Alim and Torsten Möller

Graphics, Usability, and Visualization Laboratory School of Computing Science Simon Fraser University

SAMPTA'09

U. Alim and T. Möller (GrUVi Lab.)

Outline

1 Motivation

2 MDFT

BCC and FCC Lattices

BCC DFT

5 FCC DFT

Optimal Trivariate Sampling

Sphere Packing

- $\bullet\,$ Sampling in spatial domain $\to\,$ Spectrum replication in Fourier domain
- \bullet Optimal sampling \rightarrow Tightest sphere packing
- FCC: densest packing \rightarrow BCC: optimal sampling

Optimal Trivariate Sampling

Sphere Packing

- $\bullet\,$ Sampling in spatial domain $\to\,$ Spectrum replication in Fourier domain
- \bullet Optimal sampling \rightarrow Tightest sphere packing
- FCC: densest packing \rightarrow BCC: optimal sampling

Related Work

- Reconstruction kernels well studied, e.g Box splines: Entezari et al. 2008
- Discrete tools still under development
- MDFT for arbitrary lattices, Mersereau et al. 1983
- BCC DFT: Csébfalvi et al. 2008. Redundant representation

Overview of the DFT

Overview of the DFT

MDFT

Overview of the DFT

MDFT

MDFT

Multidimensional DFT

- Multidimensional extension of the DFT
- Sampling: $f(n) = f_c(Ln)$ Replication: $\hat{F}(\boldsymbol{\xi}) = \frac{1}{|\det L|} \sum_r F_c(\boldsymbol{\xi} - \boldsymbol{L}^{-T}r)$
- Periodization of $f({m n}) o$ Sampling of $\hat{F}({m \xi})$

$$L_{\mathsf{F}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$L_{\mathsf{F}} = \left[egin{smallmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 0 \end{smallmatrix}
ight]$$

Cartesian Periodicity in Spatial Domain

• Split sampled sequence into two Cartesian sequences:

$$f_0(\boldsymbol{n}) = f_c(2h\boldsymbol{I}\boldsymbol{n})$$
 and $f_1(\boldsymbol{n}) = f_c(2h\boldsymbol{I}\boldsymbol{n} + h\boldsymbol{t})$

 $t = (1, 1, 1)^T$

• Extend both sequences periodically on a Cartesian lattice:

$$f_0(\boldsymbol{n}+\boldsymbol{N}\boldsymbol{r})=f_0(\boldsymbol{n})$$
 and $f_1(\boldsymbol{n}+\boldsymbol{N}\boldsymbol{r})=f_1(\boldsymbol{n})$

 $\boldsymbol{N} = \operatorname{diag}(N_1, N_2, N_3)$

• Cuboid fundamenetal region, $N = 2N_1N_2N_3$ samples, volume: $4Nh^3$

Forward BCC Transform

• Cartesian sampling in the Fourier domain:

$$F(\boldsymbol{k}) = \hat{F}(\boldsymbol{\xi}) \Big|_{\boldsymbol{\xi} = \frac{1}{2h} \boldsymbol{N}^{-1} \boldsymbol{k}}$$

= $\sum_{\boldsymbol{n} \in \mathcal{N}} (f_0(\boldsymbol{n}) + f_1(\boldsymbol{n}) \exp\left[-\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{t}\right]) \cdot \exp\left[-2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}\right]$

• Transform periodic on FCC lattice:

$$\hat{F}\left(\frac{1}{2h}(\boldsymbol{N}^{-1}\boldsymbol{k} + \boldsymbol{L}_{\mathsf{F}}\boldsymbol{r})\right) = \hat{F}\left(\frac{1}{2h}\boldsymbol{N}^{-1}\boldsymbol{k}\right)$$

• $F(\mathbf{k})$ also Cartesian periodic: $F(\mathbf{k} + 2\mathbf{N}\mathbf{r}) = F(\mathbf{k})$

BCC DFT

Efficient Evaluation

$$F(\boldsymbol{k}) = \sum_{\boldsymbol{n} \in \mathcal{N}} (f_0(\boldsymbol{n}) + f_1(\boldsymbol{n}) \exp\left[-\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{t}\right]) \cdot \exp\left[-2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}\right]$$

- ullet N is diagonal, kernel therefore separable
- Allows the application of the tensor product FFT

How to choose evaluation region?

- $\bullet\,$ Either exploit Cartesian periodicity in the Fourier domain, 4N samples, four fold redundancy
- Or exploit FCC geometry and choose non-redundant Cartesian region that contains the full rhombic dodecahedral period, more efficient

Non-redundant Evaluation

• Six lattice sites contribute to non-redundant region

• Each rhombic dodecahedron contains N samples.

Forward BCC Transform

Split $F(\mathbf{k})$ into $F_0(\mathbf{k})$ and $F_1(\mathbf{k})$

$$F_i(oldsymbol{k}) := \sum_{oldsymbol{n} \in \mathcal{N}} f_0(oldsymbol{n}) \expig[-2\pi j oldsymbol{k}^T oldsymbol{N}^{-1} oldsymbol{n} ig] +
onumber (-1)^i \expig[-\pi j oldsymbol{k}^T oldsymbol{N}^{-1} oldsymbol{t} ig] \sum_{oldsymbol{n} \in \mathcal{N}} f_1(oldsymbol{n}) \expig[-2\pi j oldsymbol{k}^T oldsymbol{N}^{-1} oldsymbol{n} ig]$$

• Requires the FFT of the Cartesian sequences $f_0(\boldsymbol{n})$ and $f_1(\boldsymbol{n})$

Inverse BCC Transform

• Likewise, need two inverse FFT evaluations

$$f_0(\boldsymbol{n}) = \frac{1}{N} \sum_{\boldsymbol{k} \in \mathcal{N}} (F_0(\boldsymbol{k}) + F_1(\boldsymbol{k})) \qquad \qquad \cdot \exp\left[2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}\right]$$
$$f_1(\boldsymbol{n}) = \frac{1}{N} \sum_{\boldsymbol{k} \in \mathcal{N}} \left((F_0(\boldsymbol{k}) - F_1(\boldsymbol{k})) \exp[\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{t}] \right) \qquad \cdot \exp\left[2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}\right]$$

FCC Transform

- Similar derivation
- Split sampled sequence into four Cartesian sequences
- Transform is periodic on a BCC lattice as well as a Cartesian lattice with a two-fold redundancy
- Fundamental period contained within a truncated octahedron
- To eliminate redundancy, choose a suitable Cartesian region that contains one complete truncated octahedral period

Non-redundant Region

• Five lattice sites contribute to non-redundant region

Evaluation

Split non-redundant region into four Cartesian subregions

Forward 3

$$F_m(\boldsymbol{k}) = \sum_{i=0}^{3} H_{im} \exp[-\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{t}_i] \left(\sum_{\boldsymbol{n} \in \mathcal{N}} f_i(\boldsymbol{n}) \exp\left[-2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}
ight]
ight)$$

Inverse

$$f_i(\boldsymbol{n}) = \frac{1}{N} \sum_{\boldsymbol{k} \in \mathcal{N}} \left(\exp[\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{t}_i] \sum_{m=0}^3 H_{im} F_m(\boldsymbol{k}) \right) \exp\left[2\pi j \boldsymbol{k}^T \boldsymbol{N}^{-1} \boldsymbol{n}\right]$$

• Four FFTs for forward and four IFFTs for inverse

U. Alim and T. Möller (GrUVi Lab.)

Conclusion

Summary

- Data usually acquired in axis-aligned windows, Cartesian periodicity is therefore practical
- $\bullet\,$ Cartesian periodicity in spatial domain $\rightarrow\,$ Cartesian sampling in Fourier domain
- Separable transforms, choose a suitable rectangular region
- Cubic region in Fourier domain redundant
- Non-redundant rectangular regions lead to efficient transforms

- National Science and Engineering Research Council of Canada
- SAMPTA09 Organizing Committee

Thank you for your attention

Contact:

ualim@cs.sfu.ca
http://www.cs.sfu.ca/~ualim/personal