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Motivation
• Image function describes a continuous 2D image.

f : R2 ! R

2

continuous 2D image

• In rendering, we typically use area sampling to 
discretize the image function   .f

pixel grid

• This yields a discrete approximation of   .
(can be regarded as continuous in light of Shannon’s sampling theory)

f

discrete approximation
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Goals
• Use recent developments in signal processing and approximation 

theory to seek higher-quality grid-based approximations.

• Approximate     in a shift-invariant space.

• Seek an approximation       that minimizes the       error:

• Investigate the quality improvements in the context of ray-tracing.
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Use in Graphics
• More familiar to the image-processing community [Unser 2000]

• Some recent applications in scientific visualization:
- volume reconstruction [Entezari et al. 2008]

- gradient estimation [Alim et al. 2010]

• In rendering, antialiasing approaches are largely based on Shannon’s 
sampling theory. SI spaces offer a much more flexible alternative.
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Shift-invariant spaces (1D)
• A vector-space spanned by the (scaled) shifts of a generating function: 

• The sequence                         forms a basis for         .
(The basis may not be orthogonal) 

• There exists a dual basis                         that also
spans         . Primal and dual generators are bi-orthonormal:
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shift-invariant spaces
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Familiar Examples
• Shannon’s sampling theory is a 

special case.
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• self-dual
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• Cubic interpolation [Mitchell Netravali 88]
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• primal and dual are piecewise cubic
• can represent all cubic polynomials

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

'(x)



VISAGG
Visualization and Graphics Group

Graphics Interface 2013 Rendering in Shift-Invariant Spaces

Minimum-error Approximation
• Minimum-error approximation is obtained by orthogonally projecting   

to the desired space         . 

•  Image approximation:

• Measure the coefficients according to:
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Uniform Centered B-splines
• The uniform centered B-spline          (  -degree)  

is obtained via    convolutions of the box function.

• For example, the cubic B-spline can be obtained in 
two different ways:

bd(x)
d

bd(x) : = (b ⇤ b ⇤ . . . ⇤ b)| {z }
d+1 repetitions of b

(x)
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Dual Generators
• The box function is self-dual. Higher degree B-

splines are not.

• Duals have the following Fourier-domain 
expression:
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• Duals have the following Fourier-domain 
expression:
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acknowledged [20, Chapter 7], we are unaware of any work that
demonstrates their potential impact on rendering quality.

The remainder of the paper is organized as follows. We present
a brief overview of shift-invariant spaces in Section 3. In Section 4,
we propose our novel image acquisition and processing steps in the
context of rendering. Experimental results are presented in Sec-
tion 5. Finally, Section 6 concludes the paper with an eye on topics
that deserve further investigation.

3 PRELIMINARIES

For the sake of clarity, we present the necessary mathematical con-
cepts in 1D with the implicit assumption that the theory can be eas-
ily extended to the 2D Cartesian lattice via a simple tensor product.
A more thorough treatment can be found in surveys by Unser [25]
(univariate) and Alim [1, Chapter 1] (multivariate).

We denote the space of finite-energy real-valued univariate func-
tions as L2(R). For functions f and g that belong to L2(R),
we denote their inner product as

〈
f, g

〉
:=

∫
R
f(x)g(x)dx. The

function space L2(R) is a Hilbert space with respect to this inner
product. In other words, the L2-norm of a function f is given by

‖f‖ :=
√〈

f, f
〉
. Note that L2(R) includes the space of bandlim-

ited functions but has a richer structure.
We denote the Fourier transform of a function f as f̂(ω) :=∫

R
f(x) exp(−ıωx)dx, where ı :=

√
−1. When there is no

room for ambiguity, we also use the same notation to denote the
discrete-time Fourier transform of a sequence c[·], i.e. ĉ(ω) :=∑

n∈Z
c[n] exp(−ıωn). Likewise, we make use of the symbol ‘∗’

to denote both continuous and discrete convolutions.

Shift-Invariant Spaces: A shift-invariant space spanned by a
generating function ϕ is defined as follows:

Vh(ϕ) :=

{
g(x) =

∑

n∈Z

c[n]ϕ(
x
h
− n) : c ∈ l2(Z)

}
, (1)

where h > 0 is a parameter that controls the scale of the space,
and l2(Z) is the space of finite-energy coefficient sequences, i.e.∑

n∈Z
|c[n]|2 < ∞. Vh(ϕ) is therefore the space spanned by the

scaled and translated versions of the generating function ϕ. Ob-
serve that if we set ϕ = sinc, we obtain the familiar space of
bandlimited functions. In order to ensure that Vh(ϕ) ⊂ L2(R),
the generator ϕ must satisfy certain admissibility criteria [25]. The
sinc is certainly an admissible generator but there are other com-
pact ones that are computationally more efficient as described be-
low. Unless otherwise stated, we assume that ϕ is an even function,
i.e. ϕ(−x) = ϕ(x).

Minimum-Error Approximation: For an admissible generator
ϕ, there exists a biorthogonal dual generator ϕ̊ such that

〈
ϕ, ϕ̊(·−

n)
〉
= δ[n], where δ[·] is the Kronecker delta sequence (δ[n] = 1 if

n = 0 and 0 otherwise), and both ϕ and ϕ̊ span the same space, i.e.
Vh(ϕ) = Vh(ϕ̊). This duality relationship leads to the following
series-expression for ϕ̊:

ϕ̊(x) =
∑

n∈Z

a−1
ϕ [n]ϕ(x+ n), (2)

where aϕ[n] :=
〈
ϕ,ϕ(· − n)

〉
is the auto-correlation sequence of

ϕ, and a−1
ϕ is its inverse, i.e. (aϕ ∗ a−1

ϕ )[n] = δ[n]. Equivalently,

in the Fourier domain, we have â−1
ϕ (ω) = 1/âϕ(ω), and

̂̊ϕ(ω) = ϕ̂(ω)
âϕ(ω)

. (3)

Note that the integer translates of the sinc function form an orthog-
onal system. The sinc is therefore self-dual.
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Figure 1: Plots of the linear (β1(x) - left) and cubic (β3(x) - right)
B-splines and their duals (dashed).

The approximation fapp(x) ∈ Vh(ϕ) of a function f(x) ∈
L2(R) that minimizes the L2-error ‖f − fapp‖ is obtained by or-
thogonally projecting f onto Vh(ϕ). This is realized by taking a
sequence of inner-products with respect to the dual ϕ̊, i.e.

f(x) ≈ fapp(x) =
∑

n∈Z

1
h

〈
f, ϕ̊(

·
h
− n)

〉

︸ ︷︷ ︸
c[n]

ϕ(
x
h
− n). (4)

As h → 0, the error ‖f − fapp‖ → 0 at a rate that depends on
the smoothness of f as well as the approximation capabilities of ϕ.
Eq. (4) is at the heart of our novel image representation methodol-
ogy and we describe in Section 4 how it can be efficiently incorpo-
rated in the rendering pipeline.

Uniform B-splines: The centered B-splines constitute a fam-
ily of compact generating functions that are widely used in prac-
tice. They are piece-wise polynomial functions that have closed-
form expressions in both the spatial and Fourier domains. We shall
therefore make use of them to approximate images in rendering.
Additional details on B-splines can be found in Unser et al. [26].

We denote the k-th (k ≥ 0) degree centered B-spline as βk(x).
It is defined recursively as

βk(x) := (βk−1 ∗ β0)(x) (k ≥ 1), (5)

where β0(x) is the familiar box function (β0(x) = 1 when x ∈
[−1/2, 1/2] and 0 otherwise). βk is therefore obtained by succes-
sive convolutions of the box function, each convolution increasing
the polynomial degree and support by 1. The following two equa-
tions can be readily used to evaluate B-splines in the spatial and
Fourier domains respectively.

βk(x) =
k+1∑

j=0

(−1)j

k!
C(k + 1, j)max(0, x+

k + 1
2

− j)k,

β̂k(ω) = sinc(ω)k+1,

(6)

where C(·, ·) is the binomial coefficient and sinc(ω) := sin(ω/2)
ω/2 .

Even though βk is compactly supported, its dual β̊k is not, and
decays at a rate that depends on the degree k. The only exception is
β0(x) which is self-dual. Fig. 1 shows the familiar linear (tent) and
cubic B-splines as well as their duals.

4 RENDERING IN SHIFT-INVARIANT SPACES

The inner product in Eq. (4) plays the role of a point spread func-
tion (PSF) in an imaging device. If we convolve the function f with
a scaled version of the dual ϕ before point-sampling, we would
obtain the ideal approximation in the space Vh(ϕ). This is obvi-
ously not the case in digital imaging modalities such as photog-
raphy, magnetic resonance imaging (MRI) or computed tomogra-
phy (CT), where the choice of the PSF is usually constrained by
hardware design considerations. The minimum-error approxima-
tion is therefore not attainable and post-processing techniques are
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It is defined recursively as
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where β0(x) is the familiar box function (β0(x) = 1 when x ∈
[−1/2, 1/2] and 0 otherwise). βk is therefore obtained by succes-
sive convolutions of the box function, each convolution increasing
the polynomial degree and support by 1. The following two equa-
tions can be readily used to evaluate B-splines in the spatial and
Fourier domains respectively.
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Even though βk is compactly supported, its dual β̊k is not, and
decays at a rate that depends on the degree k. The only exception is
β0(x) which is self-dual. Fig. 1 shows the familiar linear (tent) and
cubic B-splines as well as their duals.
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The inner product in Eq. (4) plays the role of a point spread func-
tion (PSF) in an imaging device. If we convolve the function f with
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• Recall that we wish to compute:

• Replacing the dual with its primal representation, we get:
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analog acquisition digital processing
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Table 1: Example spaces used in our experiments

ϕ(x) Name Polynomial pieces pϕ[n] aϕ[n]

β0(x) Box
1 when x ∈ [−1/2, 1/2],

δ[n] δ[n]
0 otherwise

β1(x) Tent
1− |x| when x ∈ [−1, 1],

δ[n] [ 16 ,
2
3 ,

1
6 ]0 otherwise

β3(x) Cubic

1
6 (3|x|3−6|x|2+4) when |x|∈[0,1],

[ 16 ,
2
3 ,

1
6 ] [ 1

5040 ,
1
42 ,

397
1680 ,

151
315 ,

397
1680 ,

1
42 ,

1
5040 ]

1
6 (−|x|3+6|x|2−12|x|+8) when |x|∈(1,2),

0 otherwise

designed to counter the effect of the non-ideal acquisition [3]. Ren-
dering on the other hand does not suffer from this problem since we
can freely choose the PSF (anti-aliasing prefilter). In this section,
we describe how Eq. (4) can be efficiently evaluated using a combi-
nation of an analog acquisition step followed by a digital processing
step.

As before, for the sake of clarity, we focus on the univariate set-
ting. Additionally, without loss of generality, we assume that h = 1
and that ϕ is a compact generator. The fact that ϕ̊ is not compactly
supported might lead one to believe that the evaluation of the inner
product in Eq. (4) is an expensive operation. However, this is not
the case since we can use the primal representation of the dual ϕ̊
(cf. Eq. (2)) as leverage. In particular, we have

c[n] =
〈
f, ϕ̊(·− n)

〉

=
〈
f,

∑

m

a−1
ϕ [m]ϕ

(
·− (n−m)

)〉

=
∑

m

a−1
ϕ [m]

〈
f,ϕ

(
·− (n−m)

)〉
︸ ︷︷ ︸

r[n−m]

= (a−1
ϕ ∗ r)[n],

(7)

where r[m] :=
〈
f,ϕ(·−m)

〉
. Since ϕ is compactly supported, the

sequence r[·] can be efficiently evaluated via an analog anti-aliasing
operation. Once the approximation coefficients have been obtained,
the continuous approximation fapp can be used to get a discrete
version by sampling at the pixel locations. The final rendered image
is thus given by

fapp[m] = fapp(m) =
∑

n

(a−1
ϕ ∗ r)[n]ϕ(m− n)

= ( r︸︷︷︸
acquisition

∗ a−1
ϕ ∗ pϕ︸ ︷︷ ︸

processing

)[m],
(8)

where pϕ[n] := ϕ(n) is the sequence obtained by sampling ϕ at
the integers. The overall rendering process therefore consists of
two steps:

1. Acquisition: This is an analog operation that measures the se-
quence

r[n] =
〈
f,ϕ(·− n)

〉
. (9)

In the context of ray-tracing, it is akin to anti-aliasing i.e.,
it numerically evaluates the inner product integral by tracing
several rays that are distributed over the support of the trans-
lated function ϕ(x− n).

2. Processing: This is a purely digital operation that convolves
the acquired sequence r with the inverse autocorrelation se-
quences a−1

ϕ and the sampled sequence pϕ.

Figure 2: The rendering pipeline for minimum-error image repre-
sentation. For each pixel, the acquisition step numerically evaluates
Eq. (9) by tracing several rays through the support of the generator
ϕ centered at the pixel location (the support of the bilinear B-spline
is indicated). The resulting sequence is then digitally filtered to
yield the final pixel values.
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Figure 3: The minimum error kernel E(ω) for various approxima-
tion spaces.

Fig. 2 summarizes this two-stage rendering pipeline. By retaining
the sequence r[·], one can also easily implement straightforward
operations such as image resizing. Even though we have presented
this pipeline for static images, we can easily extend it to incorporate
dynamic images as well.

4.1 Example spaces

We now give examples of spaces based on the uniform B-splines
that can be readily incorporated in an existing renderer with very
little change. Table 1 lists the various ingredients needed to imple-
ment the minimum-error box, tent and cubic filters. Observe that
the box filter that is widely used in practice does indeed perform
an orthogonal projection since there is no need to perform the dig-
ital processing step. However, the similarity ends there since the
remaining spaces require a non-trivial digital processing step.

Intuitively, the greater the support size of ϕ, the lower the error.
It is instructive to quantitatively compare approximation spaces so
that one can reason about the capabilities provided by a particu-

fapp(x) =
X

n

(r ⇤ a�1
' )[n]'(x� n)
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Table 1: Example spaces used in our experiments

ϕ(x) Name Polynomial pieces pϕ[n] aϕ[n]

β0(x) Box
1 when x ∈ [−1/2, 1/2],

δ[n] δ[n]
0 otherwise

β1(x) Tent
1− |x| when x ∈ [−1, 1],

δ[n] [ 16 ,
2
3 ,

1
6 ]0 otherwise

β3(x) Cubic

1
6 (3|x|3−6|x|2+4) when |x|∈[0,1],

[ 16 ,
2
3 ,

1
6 ] [ 1

5040 ,
1
42 ,

397
1680 ,

151
315 ,

397
1680 ,

1
42 ,

1
5040 ]

1
6 (−|x|3+6|x|2−12|x|+8) when |x|∈(1,2),

0 otherwise

designed to counter the effect of the non-ideal acquisition [3]. Ren-
dering on the other hand does not suffer from this problem since we
can freely choose the PSF (anti-aliasing prefilter). In this section,
we describe how Eq. (4) can be efficiently evaluated using a combi-
nation of an analog acquisition step followed by a digital processing
step.

As before, for the sake of clarity, we focus on the univariate set-
ting. Additionally, without loss of generality, we assume that h = 1
and that ϕ is a compact generator. The fact that ϕ̊ is not compactly
supported might lead one to believe that the evaluation of the inner
product in Eq. (4) is an expensive operation. However, this is not
the case since we can use the primal representation of the dual ϕ̊
(cf. Eq. (2)) as leverage. In particular, we have

c[n] =
〈
f, ϕ̊(·− n)

〉

=
〈
f,

∑

m

a−1
ϕ [m]ϕ

(
·− (n−m)

)〉

=
∑

m

a−1
ϕ [m]

〈
f,ϕ

(
·− (n−m)

)〉
︸ ︷︷ ︸

r[n−m]

= (a−1
ϕ ∗ r)[n],

(7)

where r[m] :=
〈
f,ϕ(·−m)

〉
. Since ϕ is compactly supported, the

sequence r[·] can be efficiently evaluated via an analog anti-aliasing
operation. Once the approximation coefficients have been obtained,
the continuous approximation fapp can be used to get a discrete
version by sampling at the pixel locations. The final rendered image
is thus given by

fapp[m] = fapp(m) =
∑

n

(a−1
ϕ ∗ r)[n]ϕ(m− n)

= ( r︸︷︷︸
acquisition

∗ a−1
ϕ ∗ pϕ︸ ︷︷ ︸

processing

)[m],
(8)

where pϕ[n] := ϕ(n) is the sequence obtained by sampling ϕ at
the integers. The overall rendering process therefore consists of
two steps:

1. Acquisition: This is an analog operation that measures the se-
quence

r[n] =
〈
f,ϕ(·− n)

〉
. (9)

In the context of ray-tracing, it is akin to anti-aliasing i.e.,
it numerically evaluates the inner product integral by tracing
several rays that are distributed over the support of the trans-
lated function ϕ(x− n).

2. Processing: This is a purely digital operation that convolves
the acquired sequence r with the inverse autocorrelation se-
quences a−1

ϕ and the sampled sequence pϕ.

Figure 2: The rendering pipeline for minimum-error image repre-
sentation. For each pixel, the acquisition step numerically evaluates
Eq. (9) by tracing several rays through the support of the generator
ϕ centered at the pixel location (the support of the bilinear B-spline
is indicated). The resulting sequence is then digitally filtered to
yield the final pixel values.
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Figure 3: The minimum error kernel E(ω) for various approxima-
tion spaces.

Fig. 2 summarizes this two-stage rendering pipeline. By retaining
the sequence r[·], one can also easily implement straightforward
operations such as image resizing. Even though we have presented
this pipeline for static images, we can easily extend it to incorporate
dynamic images as well.

4.1 Example spaces

We now give examples of spaces based on the uniform B-splines
that can be readily incorporated in an existing renderer with very
little change. Table 1 lists the various ingredients needed to imple-
ment the minimum-error box, tent and cubic filters. Observe that
the box filter that is widely used in practice does indeed perform
an orthogonal projection since there is no need to perform the dig-
ital processing step. However, the similarity ends there since the
remaining spaces require a non-trivial digital processing step.

Intuitively, the greater the support size of ϕ, the lower the error.
It is instructive to quantitatively compare approximation spaces so
that one can reason about the capabilities provided by a particu-

• Traces several rays through the 
support of the shifted generator.

• AKA antialiasing, smooths out high 
frequencies.

fapp(x) =
X

n

(r ⇤ a�1
' )[n]'(x� n)
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Table 1: Example spaces used in our experiments

ϕ(x) Name Polynomial pieces pϕ[n] aϕ[n]

β0(x) Box
1 when x ∈ [−1/2, 1/2],

δ[n] δ[n]
0 otherwise

β1(x) Tent
1− |x| when x ∈ [−1, 1],

δ[n] [ 16 ,
2
3 ,

1
6 ]0 otherwise

β3(x) Cubic

1
6 (3|x|3−6|x|2+4) when |x|∈[0,1],
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2
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1
6 ] [ 1

5040 ,
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397
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1
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1
6 (−|x|3+6|x|2−12|x|+8) when |x|∈(1,2),

0 otherwise

designed to counter the effect of the non-ideal acquisition [3]. Ren-
dering on the other hand does not suffer from this problem since we
can freely choose the PSF (anti-aliasing prefilter). In this section,
we describe how Eq. (4) can be efficiently evaluated using a combi-
nation of an analog acquisition step followed by a digital processing
step.

As before, for the sake of clarity, we focus on the univariate set-
ting. Additionally, without loss of generality, we assume that h = 1
and that ϕ is a compact generator. The fact that ϕ̊ is not compactly
supported might lead one to believe that the evaluation of the inner
product in Eq. (4) is an expensive operation. However, this is not
the case since we can use the primal representation of the dual ϕ̊
(cf. Eq. (2)) as leverage. In particular, we have

c[n] =
〈
f, ϕ̊(·− n)

〉

=
〈
f,

∑

m

a−1
ϕ [m]ϕ

(
·− (n−m)

)〉

=
∑
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a−1
ϕ [m]

〈
f,ϕ

(
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)〉
︸ ︷︷ ︸

r[n−m]

= (a−1
ϕ ∗ r)[n],

(7)

where r[m] :=
〈
f,ϕ(·−m)

〉
. Since ϕ is compactly supported, the

sequence r[·] can be efficiently evaluated via an analog anti-aliasing
operation. Once the approximation coefficients have been obtained,
the continuous approximation fapp can be used to get a discrete
version by sampling at the pixel locations. The final rendered image
is thus given by

fapp[m] = fapp(m) =
∑

n

(a−1
ϕ ∗ r)[n]ϕ(m− n)

= ( r︸︷︷︸
acquisition

∗ a−1
ϕ ∗ pϕ︸ ︷︷ ︸

processing

)[m],
(8)

where pϕ[n] := ϕ(n) is the sequence obtained by sampling ϕ at
the integers. The overall rendering process therefore consists of
two steps:

1. Acquisition: This is an analog operation that measures the se-
quence

r[n] =
〈
f,ϕ(·− n)

〉
. (9)

In the context of ray-tracing, it is akin to anti-aliasing i.e.,
it numerically evaluates the inner product integral by tracing
several rays that are distributed over the support of the trans-
lated function ϕ(x− n).

2. Processing: This is a purely digital operation that convolves
the acquired sequence r with the inverse autocorrelation se-
quences a−1

ϕ and the sampled sequence pϕ.

Figure 2: The rendering pipeline for minimum-error image repre-
sentation. For each pixel, the acquisition step numerically evaluates
Eq. (9) by tracing several rays through the support of the generator
ϕ centered at the pixel location (the support of the bilinear B-spline
is indicated). The resulting sequence is then digitally filtered to
yield the final pixel values.
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Figure 3: The minimum error kernel E(ω) for various approxima-
tion spaces.

Fig. 2 summarizes this two-stage rendering pipeline. By retaining
the sequence r[·], one can also easily implement straightforward
operations such as image resizing. Even though we have presented
this pipeline for static images, we can easily extend it to incorporate
dynamic images as well.

4.1 Example spaces

We now give examples of spaces based on the uniform B-splines
that can be readily incorporated in an existing renderer with very
little change. Table 1 lists the various ingredients needed to imple-
ment the minimum-error box, tent and cubic filters. Observe that
the box filter that is widely used in practice does indeed perform
an orthogonal projection since there is no need to perform the dig-
ital processing step. However, the similarity ends there since the
remaining spaces require a non-trivial digital processing step.

Intuitively, the greater the support size of ϕ, the lower the error.
It is instructive to quantitatively compare approximation spaces so
that one can reason about the capabilities provided by a particu-

• Traces several rays through the 
support of the shifted generator.

• AKA antialiasing, smooths out high 
frequencies.

• Convolve with the inverse 
autocorrelation sequence.

• Restores some high frequencies.
• Efficiently implemented in the Fourier 

domain via the FFT.

fapp(x) =
X

n

(r ⇤ a�1
' )[n]'(x� n)
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Table 1: Example spaces used in our experiments

ϕ(x) Name Polynomial pieces pϕ[n] aϕ[n]

β0(x) Box
1 when x ∈ [−1/2, 1/2],

δ[n] δ[n]
0 otherwise

β1(x) Tent
1− |x| when x ∈ [−1, 1],

δ[n] [ 16 ,
2
3 ,

1
6 ]0 otherwise

β3(x) Cubic

1
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designed to counter the effect of the non-ideal acquisition [3]. Ren-
dering on the other hand does not suffer from this problem since we
can freely choose the PSF (anti-aliasing prefilter). In this section,
we describe how Eq. (4) can be efficiently evaluated using a combi-
nation of an analog acquisition step followed by a digital processing
step.

As before, for the sake of clarity, we focus on the univariate set-
ting. Additionally, without loss of generality, we assume that h = 1
and that ϕ is a compact generator. The fact that ϕ̊ is not compactly
supported might lead one to believe that the evaluation of the inner
product in Eq. (4) is an expensive operation. However, this is not
the case since we can use the primal representation of the dual ϕ̊
(cf. Eq. (2)) as leverage. In particular, we have

c[n] =
〈
f, ϕ̊(·− n)

〉

=
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= (a−1
ϕ ∗ r)[n],

(7)

where r[m] :=
〈
f,ϕ(·−m)

〉
. Since ϕ is compactly supported, the

sequence r[·] can be efficiently evaluated via an analog anti-aliasing
operation. Once the approximation coefficients have been obtained,
the continuous approximation fapp can be used to get a discrete
version by sampling at the pixel locations. The final rendered image
is thus given by

fapp[m] = fapp(m) =
∑

n

(a−1
ϕ ∗ r)[n]ϕ(m− n)

= ( r︸︷︷︸
acquisition

∗ a−1
ϕ ∗ pϕ︸ ︷︷ ︸

processing

)[m],
(8)

where pϕ[n] := ϕ(n) is the sequence obtained by sampling ϕ at
the integers. The overall rendering process therefore consists of
two steps:

1. Acquisition: This is an analog operation that measures the se-
quence

r[n] =
〈
f,ϕ(·− n)

〉
. (9)

In the context of ray-tracing, it is akin to anti-aliasing i.e.,
it numerically evaluates the inner product integral by tracing
several rays that are distributed over the support of the trans-
lated function ϕ(x− n).

2. Processing: This is a purely digital operation that convolves
the acquired sequence r with the inverse autocorrelation se-
quences a−1

ϕ and the sampled sequence pϕ.

Figure 2: The rendering pipeline for minimum-error image repre-
sentation. For each pixel, the acquisition step numerically evaluates
Eq. (9) by tracing several rays through the support of the generator
ϕ centered at the pixel location (the support of the bilinear B-spline
is indicated). The resulting sequence is then digitally filtered to
yield the final pixel values.
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Figure 3: The minimum error kernel E(ω) for various approxima-
tion spaces.

Fig. 2 summarizes this two-stage rendering pipeline. By retaining
the sequence r[·], one can also easily implement straightforward
operations such as image resizing. Even though we have presented
this pipeline for static images, we can easily extend it to incorporate
dynamic images as well.

4.1 Example spaces

We now give examples of spaces based on the uniform B-splines
that can be readily incorporated in an existing renderer with very
little change. Table 1 lists the various ingredients needed to imple-
ment the minimum-error box, tent and cubic filters. Observe that
the box filter that is widely used in practice does indeed perform
an orthogonal projection since there is no need to perform the dig-
ital processing step. However, the similarity ends there since the
remaining spaces require a non-trivial digital processing step.

Intuitively, the greater the support size of ϕ, the lower the error.
It is instructive to quantitatively compare approximation spaces so
that one can reason about the capabilities provided by a particu-

• Traces several rays through the 
support of the shifted generator.

• AKA antialiasing, smooths out high 
frequencies.

• Convolve with the inverse 
autocorrelation sequence.

• Restores some high frequencies.
• Efficiently implemented in the Fourier 

domain via the FFT.

fapp(x) =
X

n

(r ⇤ a�1
' )[n]'(x� n)

• In most cases, simply sample       at the 
integers to obtain the final image.

fapp
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• Low discrepancy sampler (256 rays per coefficient)
• Rendered at a resolution of 1000 x 1000
• Low dynamic range 
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diminish Moiré patterns.

• Effective antialiasing without unduly sacrificing sharpness.

fapp(x)

Table 2: Percentage of total energy Etotal that lies in the high-pass
regime ( |k1|, |k2| > 50). The higher the proportion, the greater the
sharpness.

Filter Percentage

Box 16.56
Conv. tent 15.19

Min-error tent 19.18
Mitchell-Netravali 15.50

Min-error cubic 17.41

Min-error tent (AA) 15.97
Min-error cubic (AA) 16.34

so that it can cover the entire width of a column of this paper at 300
DPI. In order to avoid any spurious artifacts due to printing or im-
age resizing, we urge the reader to consult the electronic versions
(provided as supplementary material) of these images as well.

A low-discrepancy sampler [15] — with 256 rays per coefficient
— was used to numerically evaluate the analog acquisition step
(Eq. (9)). Each image took about 7 minutes to render on a 2.3 GHz
Intel R© CoreTM i7 MacBook Pro R© running OS X R© 10.8.2 with 16
GB of RAM. For the digital processing step, we implemented the
convolution operation in the Fourier domain using the fast Fourier
transform (FFT) [12]. This has the advantage that the inverse auto-
correlation sequence a−1

ϕ does not need to be explicitly computed;

a convolution with a−1
ϕ in the spatial domain is equivalent to a di-

vision with the FFT of aϕ in the Fourier domain. This process
implicitly assumes periodic boundary conditions and may give rise
to local artifacts near the boundaries. In order to circumvent this
issue, we simply rendered the images at a slightly higher resolution
and cropped the relevant portion out. The reported timing data is for
the analog acquisition step since the cost of the digital processing
step is negligible in comparison.

Since our proposed minimum-error rendering scheme improves
the reproduction of higher frequencies, we also measured — for
each image — the proportion of the total energy that lies in the
low-pass regime. This is done in the Fourier domain by computing
the FFT of the raw luminance values. The total energy for a square
scalar image is defined as

Etotal(I) :=
N/2−1∑

k1,k2=−N/2

|Îk1,k2
|2, (14)

where Îk1,k2
denotes the FFT of the digital image I that has a total

of N×N pixels (N is even). This measure can be used to ascertain
the overall sharpness of an image. The resulting data for the test
scene is tabulated in Table 2.

Conventional tent vs. minimum-error tent: Fig. 6 com-
pares the conventional tent filter with our minimum-error filter that
projects onto the space V(β1). The conventional tent filter reduces
Moiré patterns that arise due to aliasing. However, it does so by
greatly blurring the image. In comparison, the minimum-error tent
filter faithfully reproduces the edges of the textures. This is further
corroborated by the zoomed insets in Fig. 6 and the luminance dif-
ference image (Fig. 7a). At the same time, due to greater aliasing

of the spectrum f̂app (cf. Fig. 4a), Moiré patterns are also enhanced
when the continuous image fapp is sampled at the pixel locations.

MN vs. minimum-error cubic: Fig. 9 shows a comparison
of the MN filter and the minimum-error filter that orthogonally
projects to the space V(β3). The MN filter restores some of the
high-frequency detail that is smoothed out by the conventional tent
filter. However, the minimum-error cubic filter is visibly sharper,

(a) Conv. tent vs. min.-error tent (b) MN vs. min.-error cubic

Figure 7: Absolute value of luminance difference. A difference of
0.25 or greater is mapped to white.

(a) Minimum-error tent (b) Minimum-error cubic

Figure 8: Removing Moiré patterns. The images were first evalu-
ated on a 2000 × 2000 grid and then downsampled to a resolution
of 1000× 1000.

although the luminance difference (Fig. 7b) is not as striking as the
difference between the conventional tent and the minimum-error
tent (Fig. 7a) filters. Additionally, the minimum-error cubic rendi-
tion (Fig. 9b) is not as sharp as its linear counterpart (Fig. 6b). This
is due the smoothing effect of the non-trivial interpolation filter pϕ.
Moiré patterns are subdued but noticeable.

Removing Moiré patterns: The end result of the minimum-
error image approximation scheme is a continuous image fapp(x)
that can be readily evaluated at any location x according to Eq. (4).
This gives us a straightforward image-space anti-aliasing recipe.
After obtaining the approximation coefficients c[·] in Eq. (7), the
continuous image fapp is first evaluated on a denser grid and subse-
quently downsampled to obtain the digital image at the target reso-
lution. Fig. 8 shows the effect of this anti-aliasing (AA) method ap-
plied to the minimum-error linear and cubic filters. Not only are the
Moiré patterns substantially reduced, the images are also sharper as
compared to the conventional tent and MN filters (cf. Table 2).
The minimum-error cubic filter, owing to its better smoothing and
post-aliasing properties (cf. Fig. 3), has a clear advantage over the
minimum-error tent filter.

5.2 Not-so-synthetic scenes

The test scene scrutinized in the previous section contains patholog-
ically high frequencies that are usually absent in typical rendered
images whose Fourier spectra are largely concentrated around the
origin. For such scenes, the minimum-error linear filter is a good
choice as it provides the greatest sharpness at a modest overhead
as compared to the ubiquitous box filter. Fig. 10 and Fig. 11 show
two example scenes rendered with the conventional and minimum-
error tent filters. The minimum-error filter greatly enhances image
clarity without introducing any undesirable artifacts.

Energy percentage (measured via the FFT) 
that lies in the high-pass regime
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• Min. error approximation recovers high 
frequencies. Therefore, a relatively noise-
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conclusion
(a) Conventional tent

(b) Minimum-error tent

Figure 10: Dusk scene rendered at a resolution of 998 × 498 with
128 low-discrepancy samples (rays) per coefficient (312.3 s). No-
tice that the minimum-error image is appreciably sharper.

field and motion-blur require more rays to be cast per coefficient in
order to ensure a noise-free acquisition. One possible way to miti-
gate this problem is to perform an oblique (sub-optimal) projection
onto a chosen space that incorporates a smoothing criterion into the
analog and/or digital steps. This is a topic of future research.

6 CONCLUSION

We have introduced a novel image representation method suitable
for rendering. Our approach is based on the idea of approximating
a rendered image in a shift-invariant space. We have derived the
necessary steps needed to realize the minimum-error approximation
scenario in the context of rendering. Our results demonstrate that
minimum-error approximations — in comparison to state-of-the-art
methods — provide a much better tradeoff between smoothing and
anti-aliasing. When aliasing is a problem that cannot be ignored,
the minimum-error cubic filter is a suitable choice. On the other
hand, for typical rendered images that mimic natural photographs,
the minimum-error tent filter is the appropriate choice.

In future, besides addressing the limitations pointed out in Sec-
tion 5.3, we plan to extend the approach to 3D in order to incor-
porate animated scenes. We also intend to apply it to volume ren-
dering, where we envisage that the partial volume effect [23] can
be further alleviated with the use of minimum-error filters in the
image space. There is also the possibility of using more efficient
spaces based on the hexagonal lattice in 2D [5, 27], and the BCC
and FCC lattices in 3D [11, 14]. Lastly, we are also interested in
exploring the connections between shift-invariant spaces and com-
pressed sensing [9] so as to produce high-quality renderings from a
subset of the measurements [21].

(a) Conventional tent (b) Minimum-error tent

Figure 11: Teapot scene rendered at a resolution of 500× 500 with
16 low-discrepancy samples (rays) per coefficient (31.8 s). Notice
how the bumpiness of the texture and the specular highlights are
exaggerated.
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Figure 12: Luminance profile for various rendering schemes. The
profiles correspond to the red horizontal line segment shown in
Fig. 5.
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and undershoots across discontinuities.
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