

Gradient Estimation Revitalized

Usman R. Alim¹ Torsten Möller¹ Laurent Condat²

¹Graphics, Usability, and Visualization (GrUVi) Lab. School of Computing Science Simon Fraser University

> ²GREYC Lab. Image Team Caen, France

SIMON FRASER UNIVERSITY

gruvi 🔲 graphics + usability + visualization

Motivation

Good renderings need good gradients

Motivation

Good renderings need good gradients

Finite Differencing

Motivation

Good renderings need good gradients

Orthogonal Projection

Alim et al., GrUVi, GREYC

Related Work: Quantitative Analysis

- Quantitative Fourier analysis of scalar reconstruction schemes [Unser and Blu '99]
- Linear interpolation revitalized [Blu et al. '04]
- Extension to derivatives in 1D [Condat and Möller '09]

Why prefilter?

- Ensures approximation and original function agree at the lattice sites
- 2 Exploits the full approximation power of φ

*l*_{*i*}: Principal lattice directions

*l*_i: Principal lattice directions

More general case considered in the paper

Principal Directions

Alim et al., GrUVi, GREYC

.

Principal Directions

2D Cartesian: 2

Hexagonal: 3

Formal Description

Approximate derivatives in the principal directions *l*_i

Interested in a digital filter that approximates in the shift-invariant space V(L_h, φⁱ), i.e.

$$\partial_{l_i} f(\boldsymbol{x}) \approx f_{\mathsf{app}}^{l_i}(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^s} \frac{1}{h} (f \ast p \ast d_i) [\boldsymbol{k}] \varphi_{h,\boldsymbol{k}}^i(\boldsymbol{x})$$

$$arphi^i(m{x}):=arphi(m{x}-rac{m{l}_i}{2})$$
 and $arphi^i_{h,m{k}}(m{x}):=arphi^i(rac{m{x}}{h}-m{L}m{k})$

The filter d_i should be chosen so that $\|\partial_l f - f_{app}^l\|_{L^2} = O(h^n)$ where *n* is the approximation order of φ .

Formal Description

- Approximate derivatives in the principal directions l_i
- Interested in a digital filter that approximates in the shift-invariant space V(L_h, φⁱ), i.e.

$$\partial_{\boldsymbol{l}_i} f(\boldsymbol{x}) \approx f^{\boldsymbol{l}_i}_{\mathsf{app}}(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^s} \frac{1}{h} (f \ast p \ast d_i) [\boldsymbol{k}] \varphi^i_{h, \boldsymbol{k}}(\boldsymbol{x})$$

$$arphi^i(m{x}) := arphi(m{x} - rac{m{l}_i}{2}) ext{ and } arphi^i_{h,m{k}}(m{x}) := arphi^i(rac{m{x}}{h} - m{L}m{k})$$

The filter d_i should be chosen so that $\|\partial_l f - f_{app}^l\|_{L^2} = O(h^n)$ where *n* is the approximation order of φ .

Formal Description

- Approximate derivatives in the principal directions l_i
- Interested in a digital filter that approximates in the shift-invariant space V(L_h, φⁱ), i.e.

$$\partial_{l_i} f(\boldsymbol{x}) pprox f^{l_i}_{\mathsf{app}}(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^s} \frac{1}{h} (f * p * d_i) [\boldsymbol{k}] \varphi^i_{h, \boldsymbol{k}}(\boldsymbol{x})$$

$$arphi^i(m{x}) := arphi(m{x} - rac{m{l}_i}{2}) ext{ and } arphi^i_{h,m{k}}(m{x}) := arphi^i(rac{m{x}}{h} - m{L}m{k})$$

The filter d_i should be chosen so that $\|\partial_l f - f_{app}^l\|_{L^2} = O(h^n)$ where *n* is the approximation order of φ .

ìs Io

Revitalization

Alim et al., GrUVi, GREYC

Why shift? (1D)

- $\beta'_2(x) = \beta_1(x + \frac{1}{2}) \beta_1(x \frac{1}{2})$ (blue)
- V(Z, β₁(x)) can't recover the exact derivative (purple)

■ $\mathbb{V}(\mathbb{Z}, \beta_1(x-1/2))$ can! (blue)

Why shift? (1D)

- $\beta'_2(x) = \beta_1(x + \frac{1}{2}) \beta_1(x \frac{1}{2})$ (blue)
- V(Z, β₁(x)) can't recover the exact derivative (purple)
- $\mathbb{V}(\mathbb{Z}, \beta_1(x-1/2))$ can! (blue)

How to shift in higher dimensions?

- Directional derivative of a 4th order hexagonal box spline is a linear combination of two lower order shifted box splines
- Shifts are in the direction of the derivative

1 Choose s linearly independent principal directions

2 Shift the symmetric box spline along those principal directions

How to shift in higher dimensions?

- Directional derivative of a 4th order hexagonal box spline is a linear combination of two lower order shifted box splines
- Shifts are in the direction of the derivative
- **1** Choose *s* linearly independent principal directions
- 2 Shift the symmetric box spline along those principal directions

Error Analysis

How to predict the directional derivative error, given an approximation space $\mathbb{V}(\mathcal{L},\psi)$ and a filter r

l: A principal lattice direction $\widehat{R} \leftrightarrow r$: Filter applied to samples \widehat{A}_{ψ} : Autocorrelation sequence

Filter Design

Combined directional derivative filter $r_i = (p * d_i)$

Asymptotic Optimality

$$E^{\boldsymbol{l}}(\boldsymbol{\omega}) := \underbrace{1 - \frac{\left|\widehat{\psi}(\boldsymbol{\omega})\right|^{2}}{\widehat{A}_{\psi}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{A}_{\psi}(\boldsymbol{\omega})\left|\frac{\widehat{R}(\boldsymbol{\omega})}{\boldsymbol{j}\boldsymbol{l}^{\mathsf{T}}\boldsymbol{\omega}} - \widehat{\psi}^{\star}(\boldsymbol{\omega})\right|^{2}}_{E^{\mathsf{l}}_{\mathsf{res}}(\boldsymbol{\omega})}$$

For a minimum error approximation:

• $E_{\text{res}}^{l}(\boldsymbol{\omega}) = 0$, not realizable!

- Choose r so that $E_{\min}(\boldsymbol{\omega}) \sim E_{\text{res}}^{\boldsymbol{l}}(\boldsymbol{\omega})$ (as $h \to 0$)
- Plug-in our basis function φ^i and combined filter $r_i = p * d_i$

Optimality Criterion

$$d_i \leftrightarrow \widehat{D_i} = j \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega} \exp(\frac{j}{2} \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega}) + O(|\boldsymbol{\omega}|^{n+1})$$

No dependence on φ

Asymptotic Optimality

$$E^{\boldsymbol{l}}(\boldsymbol{\omega}) := \underbrace{1 - \frac{\left|\widehat{\psi}(\boldsymbol{\omega})\right|^{2}}{\widehat{A}_{\psi}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{A}_{\psi}(\boldsymbol{\omega})\left|\frac{\widehat{R}(\boldsymbol{\omega})}{\boldsymbol{j}\boldsymbol{l}^{\mathsf{T}}\boldsymbol{\omega}} - \widehat{\psi}^{\star}(\boldsymbol{\omega})\right|^{2}}_{E^{\mathsf{l}}_{\mathsf{res}}(\boldsymbol{\omega})}$$

For a minimum error approximation:

• $E_{\text{res}}^{l}(\boldsymbol{\omega}) = 0$, not realizable!

Choose r so that $E_{\min}(\boldsymbol{\omega}) \sim E_{\mathrm{res}}^{\boldsymbol{l}}(\boldsymbol{\omega})$ (as $h \to 0$)

Plug-in our basis function φ^i and combined filter $r_i = p * d_i$

Optimality Criterion

$$d_i \leftrightarrow \widehat{D_i} = j \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega} \exp(\frac{j}{2} \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega}) + O(|\boldsymbol{\omega}|^{n+1})$$

No dependence on φ

Asymptotic Optimality

$$E^{\boldsymbol{l}}(\boldsymbol{\omega}) := \underbrace{1 - \frac{\left|\widehat{\psi}(\boldsymbol{\omega})\right|^{2}}{\widehat{A}_{\psi}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{A}_{\psi}(\boldsymbol{\omega})\left|\frac{\widehat{R}(\boldsymbol{\omega})}{\boldsymbol{j}\boldsymbol{l}^{\mathsf{T}}\boldsymbol{\omega}} - \widehat{\psi}^{\star}(\boldsymbol{\omega})\right|^{2}}_{E^{\mathsf{l}}_{\mathsf{res}}(\boldsymbol{\omega})}$$

For a minimum error approximation:

• $E_{\text{res}}^{l}(\boldsymbol{\omega}) = 0$, not realizable!

- Choose r so that $E_{\min}(\boldsymbol{\omega}) \sim E_{\mathrm{res}}^{\boldsymbol{l}}(\boldsymbol{\omega})$ (as $h \to 0$)
- Plug-in our basis function φ^i and combined filter $r_i = p * d_i$

Optimality Criterion

$$d_i \leftrightarrow \widehat{D_i} = j \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega} \exp(\frac{j}{2} \boldsymbol{l_i}^\mathsf{T} \boldsymbol{\omega}) + O(|\boldsymbol{\omega}|^{n+1})$$

No dependence on φ

Fourth-order 1D Filters d_i

gruvi 🗇 graphics + usability + visualization

Combined Filter (p * d) Comparison Cubic B-spline

Gradient Reconstruction

Simple linear transformation l^i : Dual of l_i

Results

- Tricubic B-splines on the Cartesian Cubic (CC) lattice
- Quintic Box spline on the Body-Centered Cubic (BCC) lattice [Entezari et al. '08]

pFIR, 24.14°, 2.11

pFIR-s, 11.53°, 1.15

P-OPT26, 18.10°, 1.96

P-FIR-s, 8.7°, 1.03

Mean angular and magnitude errors are indicated

Alim et al., GrUVi, GREYC

Gradient Estimation Revitalized

Centered vs. Shifted

P-OPT26

pFIR

Gradient Estimation Revitalized

Centered vs. Shifted

pFIR-s

Gradient Estimation Revitalized

DVR Centered vs. Shifted

pFIR

DVR Centered vs. Shifted

pFIR-s

Conclusion

Contributions

- Error Kernel to quantify accuracy of gradient estimation
- Two frameworks for designing asymptotically optimal derivative filters
- Shifted interpolation function → Better quality at no additional

Acknowledgements

Thank you for your attention

Contact:

ualim@cs.sfu.ca

Source code is available at:

http://www.cs.sfu.ca/~ualim/personal/research.html

