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Motivation
Good renderings need good gradients
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Related Work: Quantitative Analysis

Quantitative Fourier analysis of scalar reconstruction schemes
[Unser and Blu ’99]
Linear interpolation revitalized [Blu et al. ’04]
Extension to derivatives in 1D [Condat and Möller ’09]
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Why prefilter?
1 Ensures approximation and original function agree at the lattice

sites
2 Exploits the full approximation power of ϕ
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More general case considered in the paper
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Principal Directions

2D Cartesian: 2 Hexagonal: 3
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Formal Description

Approximate derivatives in the principal directions li

Interested in a digital filter that approximates in the shift-invariant
space V(Lh, ϕi), i.e.

∂lif(x) ≈ f li
app(x) =

∑
k∈Zs

1
h

(f ∗ p ∗ di)[k]ϕih,k(x)

ϕi(x) := ϕ(x− li
2

) and ϕih,k(x) := ϕi(
x

h
−Lk)

The filter di should be chosen so that ‖∂lf − f l
app‖L2 = O(hn)

where n is the approximation order of ϕ.
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Revitalization
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Shift Example (Cubic B-spline)
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Why shift? (1D)
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How to shift in higher dimensions?

Directional derivative of a 4th
order hexagonal box spline is
a linear combination of two
lower order shifted box
splines

Shifts are in the direction of
the derivative

1 Choose s linearly independent principal directions
2 Shift the symmetric box spline along those principal directions
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Error Analysis

How to predict the directional derivative error, given an approximation
space V(L, ψ) and a filter r

Error Kernel

El(ω) := 1−

∣∣∣ψ̂(ω)
∣∣∣2

Âψ(ω)︸ ︷︷ ︸
Emin(ω)

+ Âψ(ω)

∣∣∣∣∣R̂(ω)
jlTω

− ̂̊ψ?(ω)

∣∣∣∣∣
2

︸ ︷︷ ︸
El

res(ω)

l: A principal lattice direction R̂↔ r: Filter applied to samples
Âψ: Autocorrelation sequence
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Filter Design
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Asymptotic Optimality

El(ω) := 1−

∣∣∣ψ̂(ω)
∣∣∣2

Âψ(ω)︸ ︷︷ ︸
Emin(ω)

+ Âψ(ω)
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∣∣∣∣∣
2

︸ ︷︷ ︸
El

res(ω)

For a minimum error approximation:
El

res(ω) = 0, not realizable!

Choose r so that Emin(ω) ∼ El
res(ω) (as h→ 0)

Plug-in our basis function ϕi and combined filter ri = p ∗ di

Optimality Criterion

di ↔ D̂i = jli
Tω exp( j2 li

Tω) +O(|ω|n+1)

No dependence on ϕ
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Âψ(ω)︸ ︷︷ ︸
Emin(ω)
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Fourth-order 1D Filters di
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Combined Filter (p ∗ d) Comparison
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Fig. 5. The derivative error kernel for various derivative reconstruction
schemes designed for the cubic B-spline.

the direction of the derivative while p has no such dependence and can
be applied once in a preprocessing stage for all the directions in a man-
ner akin to the OP framework (Figure 4). With these design criteria,
equation (23) can be written as

bDi(ω) = bP (ω) bRi(ω) = b̊ϕi⋆(ω)jli
Tω +O(|ω|n+1)

=
`b̊ϕ(ω)

´`
jli

Tω exp( j
2
li

Tω)
´

+O(|ω|n+1).
(28)

Now, it is obvious that if p satisfies bP (ω) = b̊ϕ(ω) + O(|ω|n) and
ri satisfies bRi(ω) = jli

Tω exp( j
2
li

Tω)+O(|ω|n+1), then the com-
bined filter di satisfies (28) as well as the optimality criterion (23).
The directional dependence due to the derivative and the shift are com-
pletely reflected in the response of the derivative filter ri making the
filter p directionally independent.

An inspection of the scalar residue termEres(ω) in (19) reveals that
if we use the symmetric function ϕ to reconstruct fapp, then p also
provides an asymptotically optimal n-th order approximation of f , i.e.
bP (ω) = b̊ϕ(ω) + O(|ω|n) or equivalently, Eres(ω) = O(|ω|2n). An
interpolation prefilter that attempts to exactly interpolate the sample
values (given by (11) with ψ = ϕ) satisfies this condition [4]. Such a
prefilter is usually employed anyway to approximate the scalar func-
tion. Combining it with a derivative filter ri that satisfies bRi(ω) =

jli
Tω exp( j

2
li

Tω) +O(|ω|n+1) will therefore guarantee an n-th or-
der approximation. Higher quality quasi-interpolation prefilters are
also possible [8] and are a topic of future research.

As for the directional component ri, observe that the substitu-
tion ω′ = li

Tω converts the multi-dimensional Taylor expansion of
the term

`
jli

Tω exp( j
2
li

Tω)
´

into a one-dimensional expansion of`
jω′ exp ( j

2
ω′)

´
in the variable ω′. Therefore, it suffices to design

derivative filters in 1D and then extend them to higher dimensions by
simply applying the filter along the lattice direction li. This is an at-
tractive solution for our design goals as we are interested in keeping
the impulse response of ri as short as possible so that it can be em-
ployed on the fly. The resulting overall filtering pipeline is the same as
that obtained through the OP framework as shown in Figure 4.

4.4 Discussion
4.4.1 Error Behavior in 1D
We illustrate the error behavior of the two scenarios considered above
with a 1D example where the centered reconstruction function is cho-
sen to be a 4-th order cubic B-spline β3(x). For the OP scenario,
the first-stage is also taken to be the cubic B-spline (ψ(x) = β3(x))

and the derivative is then projected to a second-stage centered cu-
bic B-spline (ϕ(x) = β3(x)) and a shifted cubic B-spline (ϕ(x) =
β3(x− 1

2
)) yielding the filters CC and CC-s respectively.

For the practical scenario, the FIR derivative filter is obtained by
equating Taylor coefficients upto and including terms of order 4 as
explained in Section 5.1.2. The case without the shift is termed pFIR
while the one with the shift is termed pFIR-s, where p refers to the
scalar prefilter.

As shown in Figure 5, using a shifted reconstruction function leads
to better error behavior across the board. The error kernel for the OP
filter CC-s closely follows the minimum error kernel for the cubic B-
spline while CC departs significantly around ω = π suggesting that
the use of this filter would lead to corruption of high frequency con-
tent. Using a shifted reconstruction function has a more dramatic im-
pact on the FIR filters as can be clearly seen from the corresponding
error kernels. In comparison to pFIR, pFIR-s vastly improves the error
response making it comparable to the OP filter CC-s.

Finally, we show that simply computing the analytic derivative of
the scalar approximation is not the best possible choice. The error
kernel for this scheme departs from the minimum sooner as compared
to the OP schemes. This should not come as a surprise since the re-
construction quality is constrained by the approximation order of the
quadratic B-spline which is one order lower as suggested by the cor-
responding minimum error kernel in Figure 5.

4.4.2 Gradient Reconstruction
So far, we have only discussed how to accurately reconstruct direc-
tional derivatives. The problem of combining the different directional
derivatives to estimate the function gradient deserves some attention.
The column vectors of the generating matrix L of latticeL define a ba-
sis for Rd that is not necessarily orthogonal. The gradient of a function
is coordinate-system independent and can be conveniently expressed
in a dual (contravariant) basis according to

∇f(x) =
Xd

i=1
(∂lif)(x) li, (29)

where the dual vectors li are column vectors of the matrix L−T [37].
Thus, if the directional derivatives in the principal lattice directions
are approximately known, they can be easily combined to yield an
approximation of the function gradient.

5 EXPERIMENTAL VALIDATION

In order to validate our proposed shifted schemes, we consider various
4-th order gradient estimation filters to be used in conjunction with the
tricubic B-spline on the Cartesian Cubic (CC) lattice and the quintic
box spline [16] on the Body-Centered Cubic (BCC) lattice. Both of
these reconstruction functions are known to have an approximation
order of 4 [16].

5.1 Tricubic B-Spline on CC
The CC lattice C = Z3 is generated by the matrix diag(1, 1, 1). Due
to its inherent separability, it is customary to design continuous re-
construction functions and discrete filters in 1D and then extend them
to higher dimensions via a simple tensor product. Consequently, the
filters can be applied in a separable way.

5.1.1 OP Derivative Filters
We consider a 3D extension of the 1D case presented in Section 4.4.1
and choose the first-stage function to be the centered tricubic B-spline
ψ(x) = b3(x) = β3(x)β3(y)β3(z).

CC: For the unshifted case, the second stage functions ϕi(x) are
all taken to be b3(x) and the components of the gradient in the three
principal directions of C (i.e. the canonical basis) are orthogonally
projected to V(Ch, b3). This case has already been considered in our
previous work [20]. The resulting filters are completely separable and
can be obtained by a tensor product of 1D filters. The first-stage pre-
filter is given by the samples of β3(x), the auto-correlation sequence
is obtained by sampling β7(x) while the derivative filter δi is given

Alim et al., GrUVi, GREYC Gradient Estimation Revitalized 15/22
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Results

Tricubic B-splines on the Cartesian Cubic (CC) lattice
Quintic Box spline on the Body-Centered Cubic (BCC) lattice
[Entezari et al. ’08]
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Quantitative Comparison

pFIR, 24.14◦, 2.11 pFIR-s, 11.53◦, 1.15

P-OPT26, 18.10◦, 1.96 P-FIR-s, 8.7◦, 1.03

Mean angular and magnitude errors are indicated
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Qualitative Comparison
Centered vs. Shifted

pFIR P-OPT26
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Qualitative Comparison
Centered vs. Shifted
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Qualitative Comparison
DVR Centered vs. Shifted

pFIR
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Conclusion
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Contributions
Error Kernel to quantify accuracy of gradient estimation
Two frameworks for designing asymptotically optimal derivative
filters
Shifted interpolation function→ Better quality at no additional
cost!
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