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Toward High-Quality Gradient Estimation
on Regular Lattices
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Abstract—In this paper, we present two methods for accurate gradient estimation from scalar field data sampled on regular lattices.
The first method is based on the multidimensional Taylor series expansion of the convolution sum and allows us to specify design
criteria such as compactness and approximation power. The second method is based on a Hilbert space framework and provides a
minimum error solution in the form of an orthogonal projection operating between two approximation spaces. Both methods lead to
discrete filters, which can be combined with continuous reconstruction kernels to yield highly accurate estimators as compared to the
current state of the art. We demonstrate the advantages of our methods in the context of volume rendering of data sampled on
Cartesian and Body-Centered Cubic lattices. Our results show significant qualitative and quantitative improvements for both synthetic
and real data, while incurring a moderate preprocessing and storage overhead.

Index Terms—Approximation theory, Taylor series expansion, normal reconstruction, orthogonal projection, body-centered cubic

lattice, box splines.

1 INTRODUCTION

VOLUMETRIC data, typically given on a discrete lattice, are
perceived as a continuous data type, and therefore,
require the algorithms working on them to model the data as
if it were given in a continuous domain. Hence, interpolation
and reconstruction are the key aspects of any volumetric
manipulation and have a tremendous impact on the quality
and efficiency of the underlying visualization task. While
there has been a large body of work on interpolation and
reconstruction filter design, in many tasks, we also need
secondary information of the volumetric data, such as
histograms for data exploration [16], gradients for shading
[23] or higher order gradients for illustrative rendering [18],
and feature detection [17]. One could simply just take an
interpolation filter and consider its analytical derivative as a
proper derivative filter. However this unnecessarily con-
strains the conditions on accuracy and smoothness. Hence, a
separate design of gradient estimation schemes can lead to
much better results. Therefore, we will consider the design of
gradient estimation schemes in this paper. In particular, we
consider two competing designs. On one hand, we explore a
design based on a Taylor series expansion, which leads to
computationally efficient discrete derivative kernels that can
be used on the fly without precomputing gradients in a
gradient volume. On the other hand, we consider the idea of
an approximation space: a Hilbert space spanned by the
shifts of a generating function (reconstruction filter) on a
lattice. A function is approximated by projecting it onto this
space. The projection operation amounts to applying a
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prefilter to the sampled data in a preprocessing step. This
typically yields tremendous improvement of image quality,
but requires the results to be stored in a gradient volume in
order to be computationally feasible.

Our focus is on improved shading, with the assumption
that poor gradient estimation may overshadow the perfor-
mance of a superior scalar data reconstruction filter,
particularly when perceptual metrics are employed. For
this reason, we postulate that it is just as important to
improve shading as it is to improve the interpolation of the
underlying function.

2 PREvious WORK

There is a vast body of work on function interpolation and
reconstruction. There are really two philosophies—1) im-
proving the numerical accuracy based on Taylor series
expansions and 2) considering the space of bandlimited
functions. The former stems from a local argument and is
typically pursued in numerical mathematics and focuses on
accuracy in terms of asymptotic error behavior, while the
latter is a global constraint grounded in signal processing
theory and focuses on smoothness properties. Strang and Fix
[26] were the first to try to reconcile these two viewpoints.
Later, Unser [30] introduced the framework of reconstruc-
tion in shift-invariant spaces and removed the restriction of
bandlimited functions so that more general basis functions
can be employed. This resulted in the emergence of an
elegant unified framework for combining smoothness and
accuracy constraints.

In rendering, we are often concerned with the smoothness
of the reconstruction. Toward this end, Moller et al. [22]
provide a general filter design scheme that extends a purely
numerical approach based on a Taylor series expansion by
incorporating smoothness constraints. In a different work
[23], they contrast two possible approaches to gradient
estimation—using a combination of discrete derivative filter
with a continuous interpolation filter or simply computing
the derivative of the interpolation filter. While in the former
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case, one has much better control over smoothness and
accuracy, the latter case is simply more attractive since it
creates the exact gradient of the interpolated function. Here,
we argue that for rendering applications, it is not paramount
to compute the exact derivative of the interpolated function,
but it is preferable to compute the derivative that is closest to
the frue underlying function. This allows us to incorporate
smoothness constraints as well.

Despite these fundamental insights on function recon-
struction, not much work has focused on derivative
reconstruction, and to the best of our knowledge, no work
has been done on designing proper derivative filters for
arbitrary lattices. While Unser’s approach [30] has been
exploited in the visualization community to demonstrate
the tremendous impact prefiltering can have on both image
quality as well as reconstruction accuracy [3], [14], it
remains to be seen how effective prefiltering is for
derivative reconstruction. Similarly, for volume visualiza-
tion tasks, the Body Centered Cubic (BCC) lattice has been
shown to outperform the Cartesian Cubic (CC) lattice [24],
[28]. However, it is not clear whether the advantages of the
BCC lattice extend to gradient reconstruction as well. This
paper addresses this issue too.

Outside the visualization community, there has been
some progress in the way of gradient estimation on regular
lattices. Hamers et al. [15] derive discrete filters for gradient
estimation using Lagrange polynomials on a CC lattice. In
fact, their discrete filters happen to be particular solutions of
the general solution space in our Taylor series approach
(Section 3). Sun et al. [27] develop a fourth-order gradient
estimation scheme for the hexagonal lattice in 2D only.
Hertog et al. [7] compare different discrete derivative filters
in the presence of noise. However, assuming a Lagrange
polynomial fit for the gradient estimation and using a
different basis, for example, tricubic B-splines for data
reconstruction may not yield the most optimal surface
shading. We address this in our second method (Section 4),
where we take the interpolation kernel into account and
derive discrete derivative filters that are optimized for the
interpolation kernel.

One track of research has focused on designing digital
derivative filters in the Fourier domain. These techniques
inherently assume an underlying bandlimited signal. Most
methods have focused on designing filters in 1D, where
derivative reconstruction corresponds to a multiplication
with a unit slope ramp in the frequency domain. The ideal
discrete derivative filter in that case is the infinite impulse
response (IIR) sinc¢’ sampled at the grid points. The
continuous derivative can then be recovered by using the
sinc as an interpolation kernel on the filtered signal.
However, most methods seek to recover the derivative at
the grid points only for which a digital filtering solution
suffices. Because of the slow decay, sinc’ is rarely used in
practice and many approximations have been proposed.
These approximations proceed by appropriately choosing a
design criterion in the frequency domain and then optimiz-
ing it to yield either IIR or finite impulse response (FIR)
filters in the spatial domain. For example, Dutta Roy and
Kumar [9] design 1D FIR filters that are maximally linear
over a specified frequency band, and therefore, attempt to
match the unit slope ramp as closely as possible within the
band. Farid and Simoncelli [13] choose the rotation
invariance of the gradient operator in higher dimensions
as an optimality criterion to design separable FIR filters. We
are unaware of any Fourier domain techniques that design
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nonseparable derivative filters for arbitrary sampling
lattices in higher dimensions.

In comparison to Fourier domain techniques, our pro-
posed methods are different for two main reasons. First, we
are interested in volume visualization as a primary applica-
tion, and for that, we need to accurately estimate derivatives
everywhere and not just at the sample points. Second, we are
not tied to the bandlimitedness assumption, this allows us to
employ approximation-theoretic techniques in our design
methodology. The principle that unifies our proposed
approaches is the approximation order that governs how
the error behaves asymptotically. The Taylor framework
(Section 3) gives us a pointwise bound on the error whereas
the orthogonal projection (OP) framework (Section 4) yields
an error bound on the L, norm of the difference between the
original function and its approximation.

3 TAYLOR SERIES APPROACH TOWARD FILTER
DESIGN

We use the notation £ to characterize an arbitrary d-
dimensional lattice generated by the matrix

7ld]7 (1)

where [; are the column vectors. Lattice sites of £ are given
by the product Lk, where the vector k= (ki, ko, .. .,kd)T
indicates the lattice index. In this section, we derive the
Taylor series expansion of a convolution sum in IRY. We
follow the 1D analysis of Moéller et al. [21], [22] and extend it
to multiple dimensions.

3.1

L=1ll,...

Taylor Expansion of Convolution Sum over a
Lattice £

We can decompose a multidimensional function f at the
point v € IR? about = € R? using the Taylor series as

v—z)"
1) =3O ), )
n>0 .
where n € N? and D" is a cascaded partial differential
operator defined as

N B g g G
D) i= (g g s ) O 3)

Vector factorial and vector exponent have the usual multi-
. . . . d n d T
index interpretation, i.e., n! := [[,_, n;!, and v" := [];_, v}".
With this setup, the function at the lattice sites, i.e., letting
v = Lk, is given by

k) = S I gy, ()

To capture a varying sampling rate, we uniformly scale

the lattice L by a scalar factor h. Intuitively, higher h means

a lower sampling rate and vice versa. Denoting f(x) as the

result of convolving the function, sampled at the scaled

lattice points h Lk, with the filter w, defined for the lattice L,
we can write

T — th). (5)

@) = 3 fk) - T
k
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By substituting (4) into (5), we obtain
fi(x) =Y D f(z) - ay(2), (6)

where a’(x), hereinafter referred to as Taylor coefficient, is
defined as

@)=Y (hLk—=z)" w(:c —thk) . o

|
E n!

This is very similar to what Moller et al. [22] arrived at with
their 1D analysis, and therefore, following their approach,
we also introduce a continuous variable 7. Let x = h L(ky +
T):T = (71,72,...,Td)rlw,and Vi, 7; € [0,1), and where kj is a
lattice site coordinate such that the above condition on 7 is
satisfied for any z. Rewriting (7) with the new variable 7
and replacing m = k — ky yields

ay(r) =" (L =) (I - m),  (®)

which is very similar to the 1D counterpart [22]. Finally, we
can rewrite the convolution sum in (6) as

f(m) =Y D"f(x) - ay(7), (9)

where 7= (}L 'z —ky) and ko= |+L 'z]. Again, the
multi-index operator |-] has the usual interpretation of
taking componentwise floor.

3.2 Classification

A filter w can be classified based on its Taylor coefficients
a¥(t) given by (8). For example, in 3D, an ideal interpola-
tion filter will have al(7) =1 for n =0 and a¥(7) =0 for
n # 0. Likewise, an ideal first derivative filter along x in 3D
will have a(7) =1 for n=(1,0,0) and 0 otherwise.
However, in practical settings, a.'(7) may not be equal to
zero for all combinations of n and this characterizes the
error behavior of a filter, which can be used in filter
classification. Before introducing a classification, we intro-
duce a M-order set 7)) that contains all the vectors in N“
whose [;-norm is a constant A\. More formally, with A € N
and d dimensions, a \-order set 77dA is defined as

m = {ve N luf|, = A} 10)
Analogously, we define an [a, b]-order set n([lu,b] as
il _ |
ma = i (11)
k=a

where a,b € N and 0 < a < b. Contrary to [22], we define an
n-order filter (n-OF) and a k-error filter (k-EF) separately. The
definition of k-EF is the same as that of Moller et al. [22] and
depends on the asymptotic order of & in (8). We define an
n-order filter to be a filter capable of reconstructing the
desired derivative (or function) perfectly for any under-
lying polynomial of degree n or less. Shortly, we will show
that n-OF and k-EF are related to each other depending on
the type of derivative we wish to reconstruct.

Given a vector ug € n®N, which we refer to as a derivative
vector, a filter w is n-OF if the following is satisfied:

n € nlon

w 0,
am={0 <

In light of this definition, it is easy to see from (9) that the
filter will recover D" f(z). Therefore, we shall also refer to
w as a u-derivative filter. In 3D, for example, when uy, = 0,
the filter is actually an interpolation filter.

and n # ug,

(12)
n = ugp.

3.3 Designing First Derivative Filters in R®

In this section, we focus mostly on designing first derivative
filters in 3D for the BCC lattice, and hence, we set d = 3 and
drop subscripts from the notations accordingly. In this case,
Uy € 77;

Moller et al. [21] compared various normal estimation
schemes showing that using the analytic derivative of the
interpolation filter to estimate gradients for any arbitrary
point may not always be superior to using a combination of
a discrete filter and a continuous interpolation filter. In this
paper, we always prefiltered our discrete scalar data before
applying any gradient estimation filter, and therefore, we
will use the notation Fp, to denote a discrete function f[k]
which is appropriately prefiltered for the interpolation filter
H. It is important to note that this prefilter is tied to the
interpolation filter and is performed only once as a
preprocessing step. Now, denoting D and H to be the
discrete derivative and continuous interpolation operators,
respectively, we can rephrase their insight as: Fip, H' may
not always be numerically superior to (Fp,D)H. The
numerical accuracy depends largely on the underlying data
and also on the type of the interpolation filter in question.
We have observed rendering artifacts (Figs. 4 and 5)
specially around high-frequency regions using the method
Fp,H" with quintic box splines [12] on BCC. In [21], it has
also been shown that the schemes (Fp,D)H, (Fp,H)D and
Fp,(DH) are all numerically equivalent. However,
(Fp,D)H is more useful when caching is employed as
gradients can be estimated on the same grid as Fp, and the
previously computed gradients can be reused irrespective
of the type (orthographic or perspective) and step size of the
ray traversal in volume rendering. On the other hand, with
(Fp,H)D, previously computed scalar values cannot be
cached to estimate derivatives accurately in perspective
projection. Finally, Fp,(DH) may not be trivial to compute
in higher dimensions, for example, when using box splines
[6], [12]. Therefore, for the rest of this section, we seek to
develop a high-quality discrete derivative filter to be used
in the normal estimation scheme (Fp,D)H. On BCC grids,
we shall utilize quintic box spline interpolation [12], and on
CC grids, we use tricubic B-spline interpolation.

Considering (8) for a discrete filter A implies 7 =0.
Hence, we drop 7 and write the Taylor coefficients as

n

ay = jZ(Lm)" - A(L(=m)). (13)

n
The definition (12) is also applicable to any discrete filter.
Moller et al. [22] have shown that a normalization step is
necessary before the actual derivative of the function can be
extracted properly. This step is very important as it ensures
that o (1) and aj; evaluate to 1 for the desired derivative
D* . The normalization is performed by simply dividing the
filter weights by a,, (1) or aﬁ) . With proper normalization,
the asymptotic order of the error in terms of h is given by
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O(h™t1=m) [22], where n is the order of the filter as defined
in (12) and m is the [;-norm of the vector uy. In case of first
derivative filters, the error is bound by O(h"). Hence, we
refer to such a filter as n-EF. An n-OF filter that computes
first derivatives is also an n-EF filter.

3.4 Linear System for Designing Discrete Filters for
BCC

Equation (13) forms a system of linear equations, where we
set values for a4 a priori and seek to find the unknowns
A(L(—m)). The two parameters for this system are as follows:

1. Number of equations: This is determined by how
many a4 are fixed, which, in turn, is given by the
size of the set 7/*”]. This parameter decides the order
of the filter in definition (12).

2. Number of unknowns: This is given by how many
different m vectors, i.e., neighborhood of the filter,
we want to restrict the filter to. This parameter
therefore decides the support of the discrete filter.

The polynomial approximation order of the interpolating

quintic box spline has been shown to be 4, where the
interpolation constraint is met by applying a suitable digital
prefilter [4], [11]. Thus, to design a good gradient estimator
that uses the (Fp,D)H method, we need a discrete
derivative filter that has a polynomial order of at least 4.
Therefore, in this section, we design a 4-OF discrete
derivative filter along « that is suitable for the BCC lattice.
For this, we have to impose the following conditions:

o a2 =0,Yne ¥ and n # [1,0,0].
e a2 =1,n=1[1,0,0].

This leads to 35 equations, and hence, we must have at
least 35 unknowns to form a general solution. Interestingly, if
we take the vectors m such that L(—m) include all the BCC
lattice points upto fourth-order neighbors (inclusive) we
have 35 unknown weights A(L(—m)). However, the linear
system formed with this setting is not full rank and produces
a five-dimensional solution space with all the five free
variables (filter weights) belonging to the set of fourth-order
neighbors. Interesting patterns, however, can be seen in the
general solution space among the weights of the first-order
neighbors. Particularly, we observe a total of 12 symmetries
and antisymmetries. We impose similar symmetries on the
five free variables, which reduces the solution space to 1D
and the resulting filter shows an overall antisymmetry along
the z-axis and symmetries along the y and z-axes. At this
point, we seek to reduce the error in the 5th polynomial
order, and for that, we choose an error metric which weights
all the Taylor coefficients equally and is given by

E = Z(aﬁ)Q.

nend

(14)

Minimizing this error with respect to the one free variable
(filter weight) yields a discrete filter A, which has 26 nonzero
weights. The supplementary material, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG. 2010.37, pro-
vides the weights of this 26 sample discrete 4-OF first
derivative filter (OPT26) along the z-axis. Filters for y and z
derivatives follow analogously. These filter weights are not
unique as they are derived from a general solution space,

TABLE 1
Taylor Series Filters

Filter Type  Filter Name  Approx. Order (OF)  Filter Size

socD 2 2
BCD 2 8

BCC OPTI16 4 16
OPT26 4 2

2-cd 2 2

cC 4ecd 4 4

The filters are grouped by lattice type and approximation order with
corresponding filter size, in number of nonzero weights. The first row
shows the BBC filters: Second-Order Central Differencing (SOCD). Box
Central Differencing (BCD), Support-Optimal-16 (OPT16), and Error-
Optimal-26 (OPT26). The second row provides the CC filters and the
prefix in the name denotes approximation order while cd stands for
Central Differencing. The weights are given as supplementary material.

and hence, an alternate metric that minimizes the support of
the filter can be employed. This yields a filter having
16 nonzero weights (OPT16, see Table 1). In a similar
fashion, we can derive filters for CC and BCC with different
orders and support. The properties of some of these filters
are listed in Table 1. BCD is a 2-OF discrete derivative filter
that takes into account the closest 8 first-order neighbors,
which form the corners of a box, while SOCD uses the two
axis-aligned second-order neighbors that are further away
in euclidean distance.

3.5 Combination of Discrete and Continuous Filter
We briefly present the effectiveness of combining a discrete
first derivative filter and a continuous interpolation filter to
approximate first derivatives globally. Following Moéller
et al. [22], we extend their analysis to arbitrary dimensions
and reaffirm the convolution relationship between the
Taylor coefficients of the discrete filter and the continuous
interpolation filter. Denoting the combined filter by
Aw := Axw, the Taylor coefficient of Aw is given by

() = Y a - a(o)

0<i<n

(15)

where 17 is the index vector such that V&, 0 < i, < ny. Moller
et al. [21] showed a similar convolution relationship in 1D.

Further, we analyze the polynomial order (OF) of the
combined filter. Given a discrete n-OF first derivative filter
and an e-OF continuous interpolation filter, the order of the
combined filter is given by

min(e + 1,n). (16)

Itis rather interesting to note that given e < k, i.e., continuous
interpolating filter being worse than the discrete first
derivative filter, the combined filter has an order one larger
than that of the continuous filter, but can never exceed the
quality of the discrete derivative filter.

4 ORTHOGONAL PROJECTIONS

4.1 Preliminaries

In this section, we shall restrict attention to real-valued,
measurable functions that belong to the Hilbert space
Ly(IR?). We refer the reader to [8] for a review of multi-
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dimensional signal processing and to [30] for a Hilbert space
formulation of 1D signal processing.

We denote by (-,-), the inner product associated with
Ly(IR?). 1t is given by

()= [ falgta)da.

where f and g are functions in L,(IR*). We are concerned
with seeking an approximation of a function that can be
conveniently represented as a linear combination of basis
functions on a 3D lattice that are obtained by the
appropriate scaling and translation of a generating function
o(z). Toward this end, let £, denote a scaled version of
lattice £. We denote a family of basis functions associated
with the lattice £;, by

Li(p) = {tph,k(w) = ap(% - Lk) ke Zi‘}.

We drop the subscript i when it is unity and the subscript &
when talking about a function centered at the origin. We
denote the approximation space associated with £;, by

Ve, (p) = {S(w) =Y clklpni(@) : clk] € ZQ(ZS)}

kez?

where c[k] is a discrete finite-energy coefficient sequence
associated with £;, and may be quite different from the
sample values of f.

The generating function ¢ must be carefully chosen so as
to ensure that the approximation error vanishes as 7 — 0.
The admissibility of ¢ is determined by the Strang-Fix
conditions, which provide a convenient way to characterize
the approximation order of ¢ in terms of the number of zero
crossings of ¢ (the Fourier transform of ¢) on the reciprocal
lattice in the frequency domain [25].

The optimal approximation of a given input function f in
Ve, (@), in the least squares sense, is obtained by the
orthogonal projection of f onto V7, (¢) [30], which can be
written as

Pvﬂh(f,o)(f) = Z (f, &h,k)‘)ohb

kez?

(17)

where ¢ denotes the dual of ¢ and @, (-) := h™3¢ (; — Lk) is
the corresponding scaled and translated version. The dual
basis functions satisfy the biorthogonality constraint,
namely ((f)h_k, ©n1) = 6k—1, and have the Fourier domain
representatibn

0 pw) o(w)
A= R @) T SereFexp(—jaT LR

where RW as defined above, is the Fourier transform of r,[-],
the autocorrelation sequence of (. This sequence is given by
rolk] == (¢ * ¢)(x)|,_ Where x denotes the continuous
convolution operation and ¢(z) := ¢(—x) is the reversed
version of (.

This projection interpretation of sampling is more
general as compared to Shannon’s view as it encompasses
a class of functions that is much larger than the class of
bandlimited functions. In fact, the combination of ideal
low-pass filtering followed by sampling is equivalent to a

(18)

projection onto the space of bandlimited functions. In
particular, when ¢ = ¢ = sinc, the self-dual sinus cardinalis
function associated with the lattice £, the analysis function ¢
plays the role of an ideal low-pass filter, and the synthesis
function ¢ plays the role of an ideal interpolator. If it so
happens that the given function f is already bandlimited,
then the coefficient sequence obtained through (17) is
exactly the same as the sequence obtained through point
sampling f at the lattice sites. In that case, we can replace
@(z) with Dirac’s delta §(z) in (17), and the familiar
sampling theorem of Shannon follows.

4.2 Gradient Approximation

Typically in visualization applications, a sequence consist-
ing of the sample values of an unknown function f is given
to us and we have no control over the choice of the analysis
function. Our goal is to accurately estimate V f, the gradient
of f from the given sampled sequence. This can be
accomplished using a two-stage procedure as suggested
in [29]. In the first stage, we approximate f in an auxiliary
approximation space V,(v), and in the second stage, we
orthogonally project the gradient of the approximation of f
onto another approximation space V;,(¢). The generating
functions ¢ and ¢ can be chosen according to the needs of
the application. When accuracy is of prime importance,
should be chosen to have a higher approximation order as
compared to . On the other hand, when visual quality and
efficiency are important, ¢ can be chosen so that it has
comparable smoothness properties. Note that V, (1) is an
intermediate approximation space that, as we shall soon
see, governs the order and size of the discrete derivative
filter that is to be applied to the samples of f. The final
gradient approximation lies in V,(y¢), where ¢ plays the
role of an interpolation filter.

Let f[k] = f(hLk) denote the given sampled sequence and
fi(z) =3 aklynk(z) denote the first-stage approximation
of f.Since we do not have any knowledge of the underlying
function f other than its sample values, we consider a design
based on consistency, i.e., the coefficient sequence ¢; should
be such that the first-stage approximation should be able to
exactly interpolate f at the sample locations. In other words,
fi(hLk) =" c1[k]vnk(hLk) = f[k]. If the basis functions
1 are interpolating (i.e., ¥y x(hLm) = 6g_n), the coefficient
sequence c; is exactly equivalent to the sampled sequence f.
However, if the basis functions are not interpolating, ¢; can
be obtained from the sampled sequence f by applying a
suitable digital prefilter [30]. If we denote the prefilter by p; []
and its Fourier transform by 151(-), then the first-stage
approximation can be written as

fl@) =" ailklvnr(@) = (f * p1) [Klne(z),
k

k

(19)

where #, in this context, denotes the discrete convolution
operation and the prefilter p; is given in the Fourier
domain by

. 1
P) = S T exp( G Th)

(20)
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This prefiltering step not only makes the basis functions
interpolating, it is also necessary to utilize the full
approximation power of the basis function [2].

In the second stage, we project V f; onto Vz, (¢). This is
tantamount to performing three orthogonal projections, one
for each component of the gradient. Let 0;f denote the
partial derlvatlve , 1 €{1,2,3}. Using (17) and (19), the
second-stage approx1mat10n of fis given by

f2i(®) =Py, (5)(0:f1)
= Z<8ifla &ll,k><ph<,k(z)
p

— ; 1 (MmO n.m: Py k) ni(T) o

= Z &1 [m] <87wh: (Oph,kfm>(ph,k (.’1,‘)
km

= "1+ d)[K]
k

where d; is a digital derivative filter given by the inner
product

@h,k(a")ﬂ

di[n] = (Ditbn, Gpn)- (22)

4.3 Examples
Once 1 and ¢ have been chosen, the remaining key step in
the above scheme is the evaluation of the inner product (22)
that yields the discrete derivative filter d;. Here, we focus on
the CC and BCC lattices and show how the 1D B-splines can
be used to design derivative filters that implement the above
two-stage approximation scheme. In particular, on the CC
lattice, we work with generating functions formed by tensor
product B-splines, and for the BCC lattice, we employ the
family of box splines introduced by Entezari et al. [12].

Let 5"(z) denote the centered 1D B-spline of degree n. It

is given by [31]
n+1 J n
(-1 m+1 n+1
B (z) == ) T+ -7,
j; n! J 2 +
where (z) = max(0,z)" is the one-sided power function.
We also make use of the noncentered 1D B-splines that
we denote by 3(z). These have support in the interval
[0,n+ 1] and are related to the centered B-splines through
B(x) = 3" (x — 25,
A very useful property of the B-splines that we shall

exploit is that their derivatives can be expressed in terms of
lower degree B-splines. In particular,

(23)

L O R G R
A (z) = dﬁ;( ) _ i) - g - ).

Before delving into the specifics of CC and BCC lattices,
we mention the convolution interpretation of (22) that will
aid us in our design. Due to the shift-invariance of the basis
functions, the inner product in (22) can be seen as a sampled
convolution, i.e.,

o s 1 e
<ai¢h’ 90/l~">: (87,¢)h * gah)(x) ’z:th = E(aﬂ’b * S0) (Z) |z:Ln'

The latter convolution can be expressed in one of the three
equivalent forms, (9;¢* @) = (¢ * 8;p) = 0;(¢ * ¢), which
can be easily verified in the Fourier domain. Furthermore,
when ¢ is symmetric (ie., ¢=¢), as is the case with
tensor-product-centered B-splines on CC and the box
splines on BCC, this convolution can be simplified by
expanding the dual ¢ in terms of the primal basis
functions in L(p). The digital derivative filter in (22) can
then be written as d; = (d; * p2), where d; is obtained from
the primal ¢ through
1
dln] = (00 *9) @), _yp, (25)
and p, is a digital postfilter that has the Fourier transform
Py (w) :=1/R,(w) (cf., (18)).
The orthogonal projection scheme (21) that approximates
the first partial derivative can now be compactly written as

Fail®) = (b1 # f * di % po) K] pn ().

k

(26)

4.3.1 CC Lattice

The CC lattice 7 =%’ is generated by the matrix
I :=diag(1,1,1). The 1D centered B-splines are easily
extended to the CC lattice via the tensor product. Due to
their separability, tensor product B-splines are easy to
manipulate and provide a convenient way to design a
derivative filter according to (25).

Let us denote the (n+ 1)-EF tensor product trivariate
B-spline as

3

H ﬂn( sz)
=1

We choose Z;,(b™) and Z,(b") as the bases for the first and
second approximation stages, respectively. The first-stage
prefilter is given by the samples of ™ at the lattice sites as
given in (20). Since the B-splines are symmetric, we use (25)
to obtain the digital derivative filter. Due to the fact that the
convolution of the two B-splines yields another B-spline of a
higher degree [31], the CC derivative filter takes the form

b'(z) = (27)

= %(ai(bm % b")) ($)|z:k _ %(aibernJrl)(k)

6m+n+1 (k‘ ) H ﬁm+n+l (kj)
J#i

di[K]
(28)

This filter only needs to be evaluated once, derivative filters
for other directions are given by appropriate permutations.
For instance, if d,[k] is known, dy and dj are given by

d2 [k] = d1 [k‘g, kl, k’g] and d3 [k] = d1 [k3, kQ, ,Zﬁ] (29)

Finally, the postfilter is obtained from the autocorrelation
sequence 7 [-] which, due to the symmetry of B-splines,
consists of samples of (b" x b") = b?*! at the lattice sites.

4.3.2 BCC Lattice
The BCC lattice H is generated by the matrix

1 -1 -1
H=|-1 1 -1/,
-1 -1 1



HOSSAIN ET AL.: TOWARD HIGH-QUALITY GRADIENT ESTIMATION ON REGULAR LATTICES 7

and is a sublattice of 7 consisting of those points that have
the same parity (coordinates are either all odd or all even).
The Voronoi cell of each lattice site of H is a truncated
octahedron having a volume of 4.

The four-directional BCC box splines, as introduced by
Entezari et al. [12], generate bases that satisfy the Strang-Fix
relations and have mathematical properties that are very
similar to the tensor product B-splines. Box splines, in
general, have various equivalent definitions that make use
of the generating direction vectors either in the spatial
domain or in the Fourier domain [6], [12]. Here, we follow a
somewhat different approach by using the projection
interpretation of the BCC box splines as it allows us to
easily extend the B-spline framework to BCC.

A BCC box spline can be constructed by projecting a 4D
tensor product B-spline along the antipodal axis of the
supporting tesseract [12]. Let £ be the 4D column vector £ :
= (z, t)T = (1, x2, T3, t)T and O be the 4D rotation matrix

1 -1 -1
-1 1 -1
-1 -1 1
1 1 1

1
O = [01,02,93704] 25

N

that rotates 4D space so that the antipodal axis of the
tesseract is parallel to the ¢-axis [12]. We can now define the
BCC box spline of order n as the projection of a 4D tensor
product function consisting of dilated noncentered B-
splines of degree (n/2 — 1). We write this as

2n 4

a1 (1
[15 1(1025) dt,
=0 j=1

where n € 2Z.. and the leading factor of 1/4 ensures that the
box splines are normalized to have an integral of 4 (volume of
the Voronoi cell of ) over their support. In contrast to the
definition (27) of tensor product B-splines, n is the
approximation order of the box spline rather than the degree
of the constituent B-splines. The support of Z" is a rhombic
dodecahedron that has its 14 vertices at the lattice sites
(£n/2,£n/2,4n/2), (£n,0,0), (0,%£n,0), and (0,0,+n).
Since the B-splines are piecewise polynomials, the integral
in (30) can be analytically evaluated for arbitrary = € IR®.

Analogous to the CC case, let us choose the first- and
second-stage approximation bases as H;(Z™) and H;,(E"),
respectively. The first-stage prefilter is related to the
samples of =™ through (20). Like a tensor product B-spline,
a BCC box spline is symmetric and can be represented as a
convolution of lower order BCC box splines. The BCC
derivative filter (25) therefore becomes

= (x) = % (30)

] = (02" +2) )]y, = 10Z") (H),

which, after using (30) and the derivative relation in (24),
simplifies to

1 A(a+1) 4 " 1 Hr ; 1 Hrk
il =g, S0ut (30| ) TLoe (3 | )
t=0 =0

kg
(31)

where 7 := " — 1. The integrand above is also a piece-
wise polynomial and can be analytically evaluated. It is
easy to verify that the permutation relation (29) is also
applicable here.

TABLE 2
Orthogonal Projection Derivative Filters

® ®
b 1 b3 = 2 E4
b 1 i =2 LL
18 - 10
L c cc L —, QL QQ
100 294 - 52 150
3 ql qc =6 NL NQ

same as c¢c 648 same as QQ 328

(a) (b)

(a) CC. (b) BCC. The filters are grouped according to the approxima-
tion order of the first- and second-stage basis functions. Filter sizes, in
terms of the number of nonzero filter weights, are shown. The filters
are named according to the degree of the polynomials that make up
the basis functions; on CC, I-trilinear, c-tricubic and g-triquintic; and on
BCC, L-linear, Q-quintic, and N-nonic. Filter weights are provided as
supplementary material.

Finally, the autocorrelation sequence rz:[-| is needed
for the postfilter. It is obtained by sampling the box
spline (2" % ") = Z2" at the lattice sites.

5 APPLICABILITY ANALYSIS
5.1 Fourier Domain Analysis

When working with signals that are either bandlimited or
sufficiently oversampled, the quality of a filter can be
characterized in the Fourier domain in terms of its deviation
from the ideal filter. On the Cartesian lattice, it is a common
practice to design one-dimensional filters and then extend
them to higher dimensions via a tensor product. In this
section, we compare the frequency behavior of some of our
derivative filters for the CC lattice. To simplify the analysis,
we focus on those filters that are to be used in combination
with the cubic B-spline (see Table 2).

Derivatives in higher dimensions are usually computed by
using a one-dimensional derivative filter along a canonical
direction. For such a scenario, it suffices to compare the 1D
frequency profiles of the filters. Fig. 1 shows the response of
the 1D versions of our OP filters gc (eight nonzero weights)
and cc (sixnonzero weights) along with the responses of some
other digital derivative filters that are combined with the
prefiltered cubic B-spline. Roy et al.’s filter, despite its largest
kernel size, is inferior to the OP filters which have the best
passband behavior. However, this gain comes at the expense
of a deteriorated postaliasing. e-cd fares similarly in the
passband but has the worst postaliasing performance which
attests the fact that taking the analytical derivative of the
interpolation function may not be the best choice.

Applying 1D filters that have no off-axis contribution is
not the only way to compute gradients in higher dimensions.
As we have seen, the OP framework when applied to the CC
lattice leads to derivative filters that have nonzero compo-
nents along all directions. These filters can be expressed as a
tensor product of a 1D antisymmetric filter and a 1D
symmetric filter (see (28)). The resulting Fourier transform
is also separable. Farid and Simoncelli [13] have also
developed similar filters for the Cartesian lattice by optimiz-
ing the rotation invariance of the gradient operator. In Fig. 2,
we compare the performance of our OP filter cc with one of
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ideal
qc
- — —cc
4-cd
Csébfalvi et al.
-+ Roy et al.
''''' e-cd

Magnitude of Fourier Transform

Fig. 1. Frequency response of various 1D derivative filters used in
combination with the cubic B-spline. The 4 nonzero weight, 4-EF filter of
Csébfalvi and Domonkos [5] is combined with the cubic B-spline with no
prefiltering. With prefiltering, it leads to the same weights as our 4-cd
filter. Roy and Kumar's 14 nonzero weight filter is designed to be
maximally linear in the passband [9]. e-cd is the analytical derivative of
the prefiltered cubic B-spline.

their first-order derivative filters that has the same kernel
size. It is clear that the OP framework yields filters that are
not only optimal in the L, sense but also closest to the ideal in
the passband. The rotation-invariant criterion leads to filters
that reconstruct a spectrally reshaped signal [13].

Since nonseparable lattices such as the BCC lattice have
been shown to improve scalar reconstruction quality [10],
[20], [28], we believe that the OP framework when extended
to the BCC lattice should improve gradient reconstruction
quality as well.

5.2 Runtime and Storage Analysis

We proposed two different gradient estimation frameworks
wherefrom practitioners can choose an appropriate one
considering the lattice type, memory space available, and the
extent of numerical accuracy required. While the focus of our
paper is the evaluation of accuracy, in this section, we
consider the time-space requirement of both the frameworks.

Consideration for the OP framework (Section 4) is rather
straightforward. Discrete filters developed using this
method are often large, and therefore, practical implemen-
tation is feasible when gradients are precomputed, for
example, as three separate gradient volumes (one for each
component) with each having the same number of elements
as the data volume itself. If all the four volumes (including
the data volume) fit into memory, then using OP will not
only yield the most accurate gradients but will also be the
fastest; as for every sample we just need to perform four
interpolations (one for the data and three for the gradient).
Data streaming techniques can be employed when storage
space is not the limiting factor but RAM is.

The primary advantage of the Taylor series framework lies
in the fact that filters can be designed with sufficient
compactness along with choosing polynomial order (OF).
This keeps the filter size small enough for gradients to be
computed on the fly without storing them beforehand. A
typical implementation is shown in Algorithm 1. Implemen-
tation can be further optimized if caching is employed
carefully. In most visualization applications (for example, ray
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Fig. 2. Farid and Simoncelli’s [13] 294 (6 x 7 x 7) nonzero weight tensor
product derivative filter combined with the prefiltered cubic B-spline as
compared to our derivative filter cc. The right half of the antisymmetric
filter is [0, —0.193091, —0.125376, —0.018708] while the right half of the
symmetric filter is [0.361117,0.245410,0.069321,0.004711], the first
component is at the origin.

tracing), sampling is performed in a sequential manner and
often the sampling step is very small compared to the grid
spacing. For such a setting, step 4 in Algorithm 1 can be
optimized considerably by employing a cache whereby
previously computed gradients at the lattice sites are reused.

Algorithm 1. Compute the gradient at an arbitrary point z,
using an interpolation filter w and discrete derivative filters
A, Ay and A, one for each component. G denotes a set of
lattice site gradients, that are computed on the fly.
Require z,w, A,, A, and, A,
Ensure v is the gradient at «
1. G—10
2: for all {k: Lattice sites that are within the support of the
interpolation filter w} do
3:  Q « {All the data within the support of A,, A,
and A,, centered at k}
4: g — Compute the lattice site gradient at k using 2 and
the discrete derivative filters A,, A,, and A,
5. G+—GUg
6: end for
7: v — Compute the gradient using the set G and the
filter w
8: return v

In this section, we compare the complexity of gradient
estimation on different lattices and for different filters.
For this comparison, we compute the total number of
multiplications and data accesses, as indicators of
computational and data fetch overheads, respectively,
incurred by a discrete derivative (Taylor series filters) and
interpolation filter combination. For simplicity, we will
restrict our analysis to 3D and assume that the gradient
will be computed on the fly for a single arbitrary point,
without reusing results from any previously computed
gradients, using Algorithm 1.

Let H and D denote the support size of an interpolation
filter and a discrete derivative filter, respectively. In CC, due
to the separable nature of the discrete derivative filters, the
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TABLE 3
Efficiency Analysis
bl b3 52 54

DA M DA M DA M DA M
2cd 48 72 | 38 576 SOCD 24 36 | 192 288
BCD 32 108 | 256 864

4cd 96 120 | 768 960 OPTI6 64 204 | 512 1632
OPT26 136 324 | 1088 2592

(a) (b)
(a) CC. (b) BCC. Number of data accesses (DA) and multiplications (M)
for various discrete and interpolation filter combinations.

total number of data accesses incurred in step 3 of
Algorithm 1 is simply given by 3 x D, i.e., the size of the
set Q in that step. Therefore, a total number of 3 x D x H data
accesses will be required to compute the gradient at z. In
step 4 (Algorithm 1), the number of multiplications will also
be given by 3 x D. Considering that three separate inter-
polations are required in step 7 (one for each component of
v), the total number of multiplication incurred can therefore
be given by 3x D x H+3x H=3xH(D+1). So, for
example, in CC, with the 4-cd convolved with the tricubic
B-spline (we will use the notation 4-cd x b* to denote this
convolution), the total number of data accesses will be 3 x
D x H =3 x 4 x 64 = 768; and similarly, the total number of
multiplications will be 3 x H(D + 1) = 3 x 64(4 + 1) = 960.

In BCC, on the other hand, due to the nonseparable
structure, the discrete derivative filters A,, A, and A, (see
supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2010.37) access a
lot of common data, if not exactly the same, in step 3 of
Algorithm 1. For instance, with the OPT16, the size of the
set ) in step 3 will be just 16 because all the three filters
A, A, and A, use exactly the same data. But in case of the
OPT?26, due to the geometrical structure of the filters, a
total number of 34 data points are accessed. Therefore, in
BCC, the total number of data accesses will be given by
|©2] x H, where || denotes the size of the set 2 in step 3.
However, the number of multiplications will still be given
by the same formula as that of the CC, ie.,, 3 x H(D +1),
where now D is the support of a discrete derivative filter
for BCC. This is because the filter coefficients (A,, A, and
A,) are different from one another even though they may
access the same set of data. Now it is easy to verify that the
OPT16 convolved with the quintic box spline =’
(OPT16 * =*) will access 512 data points and incur 1,632
multiplications to compute a gradient.

We summarize our analysis in Table 3, which shows that
the OPT16 « =* has 1.5 times lower data access overhead
compared to the 4-cd x b*. This is interesting because, even
though the 1D separable 4-cd has a much smaller support,
the overall process ends up accessing more data compared
to its BCC counterpart. However, OPT16 * =% has 1.7 times
higher computational overhead compared to 4-cd = b®. On
the other hand, Table 4 reveals that the error difference
between OPT16 and OPT26 is rather small while the former
has a much smaller support. All these make OPT16 a good
practical purpose 4-OF filter for BCC. Similar trends can
also be seen between 2-cdxb® and a BCC counterpart,

TABLE 4
Quantitative Results
frest ML
l 0 time l 0 time

2-cd 19.0 35.3 1.59/35.81 3.13 49.4 2.23/22.56

4-cd 179 31.8 255/36.06 | 279 441  2.64/21.77

e-cd 119 224 0.85/35.63 | 152 257 0.86/19.10

1 18.6 341 0.03/34.77 | 276 324 0.06/18.67

cl 17.6 32.2 0.08/33.91 2.20 29.8 0.04/19.99

ql 17.4 31.6 0.06/34.02 2.09 29.9 0.05/19.87

cc 16.1 27.7 1.23/34.07 1.78 23.8 1.69/19.94

qec 159 276 1.31/3554 | 1.69 245 1.63/20.79

(a)
ftest ML
l 0 time l (7 time

SOCD 220 703 143/3558 | 378 689  1.84/21.58
BCD 158 187 1.89/3457 | 2.88 39.2 2.37/21.44
OPT16 137 170 239/3596 | 242 287 2.65/22.07
OPT26 13.5 16.1 3.00/34.44 2.42 28.7 4.01/23.17
e-CD 9.8 12.0 0.88/34.95 | 1.61 261  0.97/20.55
LL 15.1 229 0.17/32.96 2.50 29.3 0.20/18.87
QL 13.1 22.8 0.10/33.60 1.91 28.0 0.11/18.80
NL 125 229 0.13/33.11 1.80 291 0.14/18.96
QQ 105 13.0 1.15/33.39 | 1.38 194  1.51/20.87
NQ 9.7 12.5 1.16/34.63 1.29 219 1.56/20.42

(b)
(a) CC. (b) BCC. RMS length of the error vector (1) and RMS angular
deviation (6 in degrees) on the visible isosurface. Normal computation
time (in seconds) versus total render time is indicated. The comparison
is performed on the 0.4 isosurface of f.... and the 0.5 isosurface of ML.
For fiest, € = 0.005 and for ML, ¢ = 0.003. All images were rendered at a
resolution of 800 x 800 pixels.

BCD % =*, where the latter accesses 1.5 times less data but
at the same time incurs 1.5 times more multiplications.
Again, Table 4 reveals that BCD is superior among all the 2-
OF filters and this makes it a good practical choice as a 2-OF
filter in BCC.

6 RESULTS AND DISCUSSION

We followed the recipes presented in Sections 3 and 4 to
design gradient estimation filters of different orders for
both the CC and BCC lattices. A summary of our Taylor
filters is given in Table 1 while the orthogonal projection
filters are summarized in Table 2.

The gradient filters presented in Table 1 are defined in the
spatial domain and have compact support. We therefore
implemented them so that the gradients are estimated on the
fly using Algorithm 5.2. On the other hand, the OP gradient
filters in Table 2 have comparatively larger kernels and need
to be combined with pre and postfilters ((20) and (18),
respectively) that are defined in the frequency domain. To
efficiently implement these filters, we employed the multi-
dimensional discrete Fourier transform (MDEFT) in a pre-
processing step to yield a gradient volume. On the CC lattice,
the MDFT can be evaluated using a tensor product fast
Fourier transform (FFT). The MDFT on the BCC lattice is
nonseparable, but can still be efficiently evaluated using the
FFT as recently shown by Alim and Moller [1]. We also used
the MDEFT to prefilter scalar data when interpolating with
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(a) (b)

Fig. 3. Isosurfaces of the unsampled synthetic functions. (a) The
modified test function, o« =0.25, v =2, and f,, =6, showing the
isovalues 0.4 (rendered opaque), 0.5 (green), and 0.6 (purple).
(b) The ML test function, isovalue = 0.5 and other parameters as given
in [19].

either the tricubic B-splines on CC or the quintic box spline
on BCC in order to fully exploit the approximation power.
The cost of this prefiltering step is negligible as compared to
the cost of the subsequent rendering operations.

6.1 Implementation

For OP filters, we used two separate volumes to store
prefiltered scalar values and precomputed gradients, whose
components were interleaved in memory, respectively. On
the other hand, we only stored the prefiltered scalar volume
in memory for all the Taylor series filters and always
computed gradients on the fly. We evaluated ray-casting
integrals in two modes:

o Isosurface Rendering (ISR): A given isosurface is
extracted along a ray in the volume using a Linear
Bisection technique, and once the isosurface is
found, the gradient is estimated at that point and
shaded accordingly. Only scalar interpolation is

performed during the isosurface extraction stage.
Keeping the underlying interpolation filter the same
allows us to investigate how the quality of the
rendered images changes as a result of different
gradient estimation schemes.

e Direct Volume Rendering (DVR): For every sample
taken along the ray, scalar interpolation is performed
and a transfer function is evaluated. The gradient is
estimated only when the transfer function is nonzero.

We implemented our volume ray caster as a single-
threaded application and ran all our experiments on an
Intel Core 2 Duo (2.40 GHz on each core) machine with
4 GB RAM running Linux. We also optimized our codes
using compiler (GCC version 4.4.1) level optimization flags
(-march=core2 -06 -ffast-math -funroll-all-
loops -ftree-vectorize) turned on. All reported
timing data are obtained using these codes.

6.2 Synthetic Data

We used the popular synthetic function proposed by
Marschner and Lobb (ML) [19]. This function has a form that
allows one to correctly point sample it so as to ensure that
there is no aliasing of the spectrum in the frequency domain.
In practice, however, one may have little to no knowledge of
the underlying frequency content of a sampled signal in
which case, a reconstruction that attempts to minimize the L
norm of the error is a more desirable one. Furthermore,
isosurfaces of the ML function are not closed manifolds and
error is introduced near the boundaries of the sampling
window since data outside the window need to be fetched to
accurately reconstruct the function or its gradient. For these
reasons, we also employed an appropriately modified
version of the ML function so that the isosurfaces are closed
manifolds that radiate spherically outward with increasing
isovalue (Fig. 3). The resulting function can be written in
Cartesian coordinates as

(32)

frest(z) == 7||z|| — arcos (27Tfm£>,

]|

Fig. 4. Isosurface of the ML function shaded using different normal estimation schemes; top row, CC, and bottom row, BCC. The analytic form of the
ML function is used to compute the isosurface and the sampled data are used for normal estimation. To facilitate comparison, the left half of each
image shows the truth. For (b) and (f), ¢ = 0.003. (a) 2-cd. (b) e-cd. (c) 4-cd. (d) qc. (e) BCD. (f) e-C'D. (g) OPT16. (h) NQ.



HOSSAIN ET AL.: TOWARD HIGH-QUALITY GRADIENT ESTIMATION ON REGULAR LATTICES 11

(a) (b) (c)

(d) (e) )

Fig. 5. Reconstructed isosurface of fi.s shaded using different gradient estimation schemes. The top row shows the rendered images as compared
to the truth while the bottom row shows the corresponding error images. The left half of an error image illustrates the l;-norm of the error vector,
where a value of 15 or more is mapped to the brightest green. The right half illustrates the angular deviation, where an angle of 15 degrees or more is
mapped to the brightest orange. For (b) and (e), e = 0.005. (a) 4-cd. (b) e-cd. (c) cc. (d) OPT16. (e) e-CD. (f) QQ.

where z € R® (z #0) and 7, o, and f,, are positive real
parameters. The cosine frequency modulation form akin to
the ML function can be obtained by expressing the above
equation in spherical coordinates. As z — 0, the oscillation
frequency of this function tends to infinity. Thus, for any
finite sampling rate, one can always choose an isosurface that
would be a demanding test for any reconstruction filter.

We point sampled both the ML function and fist within
a (—1,1)* window on CC and BCC lattices. For the ML
function, we used the parameters given in [19] and sampled
the function on a 41 x 41 x 41 CC grid and on an equivalent
32 x 32 x 64 BCC grid. For fi., we used the parameters
shown in Fig. 3 and sampled it on CC and BCC grid sizes of
101 x 101 x 101 and 80 x 80 x 160, respectively.

We performed ISR experiments using both test functions.
For the ML function, we chose an isovalue of 0.5, whereas
for fit, we chose an isovalue of 0.4. We used the analytic
form of the functions to compute isosurface intersections
and used the sampled versions solely for normal estimation.
This ensures that the underlying shape of the isosurface is
the same for both lattice types. For the Taylor filters,
gradients were computed on the fly using the prefiltered
sampled data and combined with either tricubic B-spline or
quintic box spline interpolation depending on the lattice.
On the other hand, for the OP filters, the stored gradient
volume was used to interpolate gradients at nongrid points.
The interpolation filter used is governed by the basis
function used in the second stage as indicated by the second
letter of the filter name.

Fig. 4 shows the isosurface of the ML function shaded
with different gradient estimation schemes. The terms e-cd
(on CC) and -CD (on BCC) refer to estimating the gradient
locally at the point of intersection by computing the
gradient of the interpolated function using central differ-
ences in the axial directions with a step size of €. As € goes to
zero, we recover the analytic derivative of the interpolated
function. The superiority of the BCC lattice is clearly
evident; the BCC filters BCD and OPT16 do a better job at

reconstructing the normals than their CC counterparts 2-cd
and 4-cd. The difference between OPT16 and BCD is also
more apparent than the difference between 4-cd and 2-cd.
Additionally, we observe that e central differencing yields
better normal estimates as compared to the second and
fourth-order Taylor filters. However, e-CD on BCC gives
rise to rippling artifacts, which are absent in e-cd on CC. The
OP filters gc and NQ outperform all the other filters in their
respective categories. With NQ, the artifacts introduced by
e-CD are removed and the appearance of the isosurface is
closest to the truth.

We also used the test functions to quantify the
performance of the filters and measured the Root Mean
Square (RMS) ly-norm of the difference between the true
gradient and the estimated gradient, as well as the RMS
angular deviation from the truth, on the visible isosurface.
Besides numerical accuracy, we also measured the time
taken to estimate gradients. The resulting data are tabulated
in Table 4 and some of the isosurface renderings of fies
along with the error distributions are shown in Fig. 5. Note
that we do not report the scalar interpolation time because
scalar values were evaluated from the analytic functions.

Our numerical results corroborate the fact that the
advantages of BCC sampling extend to gradient reconstruc-
tion as well. The BCC filters yield significantly lower RMS
error values as compared to their CC cousins. We observe
the same trend quantitatively that we qualitatively saw in
Fig. 4; e-central differencing is better than the second and
fourth-order Taylor filters, and the higher order OP filters
are comparable in accuracy to e-central differencing. On the
BCC side, however, orthogonal projection seems to have a
clear advantage which is further substantiated by the
corresponding images in Fig. 5. We see no rippling artifacts
in QQ and the error image is mostly black.

Timing results show that all the OP filters perform
similarly as gradients are all precomputed. For the Taylor
series filter, which are used to compute normals on the fly,
runtime increases with increasing filter order (OF). Since
most of the time in ISR mode is spent evaluating the
analytic functions, the total runtimes of all the experiments
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Fig. 6. An isosurface of the high-resolution carp fish data set.

are fairly close to each other. With compiler optimizations
turned on, we observed that quintic box spline evaluation is
fairly similar, if not marginally faster sometimes, to that of
tricubic B-Spline on Intel Core 2 Duo. But on AMD Opteron,
with the same compiler optimizations, we noticed that
quintic box spline evaluation is usually marginally slower
than that of tricubic B-Spline. On the other hand, with no
compiler optimizations, we observed that this fact is quite
the opposite and BCC performs twice faster than CC on
both platforms. However, we do not report times from
unoptimized codes in this paper.

6.3 Real Data

To assess the practical impact of our filters on the
visualization of volumetric data, we rendered isosurface
images of the carp and bunny data sets in ISR mode. The
original CC data sets have grid sizes of 512 x 512 x 512 and
512 x 512 x 361, respectively. Fig. 6 depicts the original
high-resolution carp’s skull reconstructed with prefiltered
tricubic B-spline interpolation and shaded using the OP
filter cc in conjunction with the tricubic B-spline.

The first row of Fig. 7 shows the carp’s skull reconstructed
using prefiltered tricubic B-spline scalar interpolation on a
downsampled CC grid and shaded using four different
gradient estimation schemes. The second row analogously
shows the results for a downsampled BCC grid. The images
follow the same trend as that in Fig. 4. With the second-order
filters (2-cd and BCD), the image appears smoothed out and
sharp features are largely absent. It becomes progressively
better with the fourth order filters (4-cd and OPT16) and e-
central differencing. The rippling artifacts that we observed
in the case e-C'D earlier can be seen here as well. As before,
the OP filters (gc and NQ) reveal the lost features by
enhancing high-frequency details.

In a typical ISR setting, the majority of the time is spent
performing scalar interpolations and this fact is reaffirmed
in the timings of Fig. 7. Note that the gradient estimation
time for ISR is very small compared to the overall time and
is therefore susceptible to time measurement noises.

We also rendered DVR images, Fig. 8, of the carp data-set
to study the visual artifacts and the runtime of different
gradient estimation techniques combined with different
scalar interpolations on CC and BCC. For these images, we
used the same data set as Fig. 7. The zoomed-in insets of Fig. 8
clearly show that BCC renditions are visually superior in
terms of scalar interpolation as the bones were reconstructed
better. Normals estimated using the OP framework, in both
CC and BCC, enhance details compared to the Taylor series
filters. However, OPT16 in BCC produces better contrast
compared to the CC counterpart, 4-cd.

The time measurements in Fig. 8 show that gradient
estimation using the OP framework is the fastest, which is of
no surprise as the gradients are precomputed. Also, gradient
estimation with OPT16, for example, is slower than that of 4-
cd by a factor of about 1.04. This agrees with our analysis in
Section 5, where we have argued that the discrete convolution

() ()

(© (d

0.20, 68.85, 70.65

0.07, 69.96, 71.61

(9 (h)

Fig. 7. Carp data set downsampled to a 160 x 160 x 160 CC grid (a-d) and a 126 x 126 x 252 BCC grid (e-h) and prefiltered appropriately for
interpolation filters on the respective grids. Isosurface reconstructed and shaded using tricubic B-spline interpolation on CC and quintic box spline
interpolation on BCC. The timing data (in seconds) indicate the normal computation time, the scalar interpolation time, and the total render time,
respectively. All images were rendered at a resolution of 512 x 512. (a) 2-cd. (b) e-cd. (c) 4-cd. (d) gc. (e) BCD. (f) e-C'D. (g) OPT16. (h) NQ.
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(a) (b)

(© (d

Fig. 8. DVR images of the downsampled carp CC (a,b) and BCC (c,d) data sets (prefiltered for the respective interpolation filters) rendered at a
resolution of 600 x 390 pixels. Normal computation time, scalar interpolation time, and the total render time are indicated. (a) 4-cd (56.35, 69.89,

129.00). (b) gc (35.44, 69.68, 108.33). (c) OPT16 (58.75, 68.38, 130.22). (d) NQ (29.15, 69.67, 101.55).

Fig. 9. An isosurface of the high-resolution bunny data set. Trilinear interpolation is used for both the scalar data and the gradient. (a) 2-cd. (b) 4-cd.

(c) II. (d) gl.

of OPT16, if not similar, should be marginally slower than 4-
cd despite the former having a much larger support.

Finally, Fig. 9 illustrates the result of combining the
normal estimation schemes with trilinear interpolation. We
used the high-resolution CC bunny data set for this
purpose. As before, in comparison to 2-cd, 4-cd enhances
the details slightly especially in the high-frequency regions.
These details are enhanced even further with the OP filters
Il and gl. Subtle features on the surface of the bunny, which
are smoothed out in the 2-cd rendition, are much more
clearly visible. At the same time, however, ringing artifacts
due to an imperfect CT reconstruction are also appreciably
enhanced. This suggests that the higher order OP filters
enhance high-frequency details and should therefore be
used with caution in the presence of noise.

7 CONCLUSION

In this paper, we have presented two gradient estimation
methods to extend the state of the art. We believe that these
methods have a broad range of applicability as they give the
practitioner the flexibility to design filters to suit their needs.
We extended a 1D Taylor series framework to multiple
dimensions and used it to design compact filters that can be
computed on the fly with little runtime overhead. We also
considered the idea of prefilters and derived high-quality
filters using tensor product B-splines on CC and box splines
on BCC. Our results show that, when accuracy and quality
are crucial, a filter based on the Hilbert space framework can
be employed with some storage overhead to appreciably
improve image quality. Additionally, our methods can easily
be extended to design filters that compute higher order
derivatives on arbitrary sampling lattices.

In future, we plan to extend the Taylor series framework to
design compact stencils for the numerical solution to partial
differential equations. We also plan to investigate the error
behavior of the orthogonal projection scheme in the Fourier
domain in terms of a frequency error kernel as proposed by
Blu and Unser [2]. Their formulation has the advantage that it
is applicable to a class of functions that is much richer than
the class of bandlimited functions. It also enables us to
incorporate smoothness constraints so that the L, approx-
imation error is guaranteed for functions that are sufficiently
regular. Furthermore, the error kernel can be used to design
suboptimal projection schemes that are not only computa-
tionally more efficient but also achieve the same rate of decay
of error as the orthogonal projection scheme.

ACKNOWLEDGMENTS

The carp and bunny data sets are courtesy of the Volume
Library, http://www9.informatik.uni-erlangen.de/Exter
nal/vollib/. The authors would like to thank Dr. Alireza
Entezari for providing the BCC interpolation code as well as
Dr. Dimitri Van De Ville and Dr. Laurent Condat for many
fruitful discussions. This work has been funded in part by the
Natural Science and Engineering Research Council of
Canada.

REFERENCES

[1] U.R. Alim and T. Moller, “A Fast Fourier Transform with
Rectangular Output on the BCC and FCC Lattices,” Proc. Eighth
Int’l Conf. Sampling Theory and Applications (SampTA '09), May
2009.

[2] T. Blu and M. Unser, “Quantitative Fourier Analysis of Approx-
imation Techniques: Part I—Interpolators and Projectors,” IEEE
Trans. Signal Processing, vol. 47, no. 10, pp. 2783-2795, Oct. 1999.



B3]

(4

(5]

(o]
(1

8]
]

(10]

[11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

B. Csebfalvi, “An Evaluation of Prefiltered Reconstruction
Schemes for Volume Rendering,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 2, pp. 289-301, Mar./Apr. 2008.

B. Csébfalvi and B. Domonkos, “Pass-Band Optimal Reconstruc-
tion on the Body-Centered Cubic Lattice,” Proc. Conf. Vision,
Modeling, and Visualization 2008, p. 71, Oct. 2008.

B. Csébfalvi and B. Domonkos, “Prefiltered Gradient Reconstruc-
tion for Volume Rendering,” J. WSCG, vol. 17, nos. 1-3, pp. 49-56,
2009.

C. de Boor, K. Hollig, and S. Riemenschneider, Box Splines.
Springer Verlag, 1993.

D. den Hertog, R. Brekelmans, L. Driessen, and H. Hamers,
“Gradient Estimation Schemes for Noisy Functions,” technical
report, 2003.

D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal
Processing, first ed. Prentice-Hall, Inc., 1984.

S.C. Dutta Roy and B. Kumar, “Digital Differentiators,” Handbook
of Statistics, vol. 10, pp. 159-205, Elsevier Science Publishers B.V.,
1993.

A. Entezari, R. Dyer, and T. Méller, “Linear and Cubic Box Splines
for the Body Centered Cubic Lattice,” Proc. IEEE Conf. Visualiza-
tion, pp. 11-18, Oct. 2004.

A. Entezari, M. Mirzargar, and L. Kalantari, “Quasi Interpolation
on the Body Centered Cubic Lattice,” Computer Graphics Forum,
vol. 28, pp. 1015-1022, 2009.

A. Entezari, D. Van De Ville, and T. Moller, “Practical Box Splines
for Reconstruction on the Body Centered Cubic Lattice,” IEEE
Trans. Visualization and Computer Graphics, vol. 14, no. 2, pp. 313-
328, Mar./Apr. 2008.

H. Farid and E. Simoncelli, “Differentiation of Discrete Multi-
Dimensional Signals,” IEEE Trans. Image Processing, vol. 13, no. 4,
pp- 496-508, Apr. 2004.

B. Finkbeiner, U.R. Alim, D.V.D. Ville, and T. Moller, “High-
Quality Volumetric Reconstruction on Optimal Lattices for
Computed Tomography,” Computer Graphics Forum, vol. 28,
no. 3, pp. 1023-1030, 2009.

H. Hamers, R. Brekelmans, L. Driessen, and D. den Hertog,
“Gradient Estimation Using Lagrange Interpolation Polynomials,”
technical report, 2003.

G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of
Transfer Functions for Direct Volume Rendering,” Proc. IEEE
Symp. Volume Visualization, pp. 79-86, 1998.

G. Kindlmann, X. Tricoche, and C.-F. Westin, “Anisotropy Creases
Delineate White Matter Structure in Diffusion Tensor MRI,” Proc.
Ninth Int’'l Conf. Medical Image Computing and Computer-Assisted
Intervention (MICCAI "06), pp. 126-133, Oct. 2006.

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. MJller,
“Curvature-Based Transfer Functions for Direct Volume Render-
ing: Methods and Applications,” Proc. IEEE Conf. Visualization,
pp- 513-520, Oct. 2003.

S.R. Marschner and R.J. Lobb, “An Evaluation of Reconstruction
Filters for Volume Rendering,” Proc. IEEE Conf. Visualization,
pp- 100-107, Oct. 1994.

T. Meng, B. Smith, A. Entezari, A.E. Kirkpatrick, D. Weiskopf, L.
Kalantari, and T. Moller, “On Visual Quality of Optimal 3D
Sampling and Reconstruction,” Proc. Conf. Graphics Interface,
pp. 265-272, May 2007.

T. Moller, R. Machiraju, K. Mueller, and R. Yagel, “A Comparison
of Normal Estimation Schemes,” Proc. IEEE Conf. Visualization,
pp- 19-26, Oct. 1997.

T. Moller, R. Machiraju, K. Mueller, and R. Yagel, “Evaluation and
Design of Filters Using a Taylor Series Expansion,” IEEE Trans.
Visualization and Computer Graphics, vol. 3, no. 2, pp. 184-199, Apr.-
June 1997.

T. Moller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel,
“Design of Accurate and Smooth Filters for Function and
Derivative Reconstruction,” Proc. Symp. Volume Visualization,
pp- 143-151, Oct. 1998.

N. Neophytou and K. Mueller, “Space-Time Points: 4D Splatting
on Efficient Grids,” Proc. 2002 IEEE Symp. Volume Visualization and
Graphics (VVS '02), pp. 97-106, 2002.

G. Strang and G.J. Fix, “A Fourier Analysis of the Finite Element
Variational Method,” Constructive Aspects of Functional Analysis,
pp- 796-830, 1971.

G. Strang and G.J. Fix, An Analysis of the Finite Element Method.
Prentice Hall, 1973.

[27] H. Sun, N. Kang, J. Zhang, and E.S. Carlson, “A Fourth-Order
Compact Difference Scheme on Face Centered Cubic Grids with
Multigrid Method for Solving 2D Convection Diffusion Equa-
tion,” Math. and Computers in Simulation, vol. 63, no. 6, pp. 651-661,
2003.

T. Theufll, T. Moller, and E. Groller, “Optimal Regular Volume
Sampling,” Proc. IEEE Conf. Visualization 2001, pp. 91-98, Oct.
2001.

M. Unser, “A General Hilbert Space Framework for the
Discretization of Continuous Signal Processing Operators,” Proc.
SPIE Conf. Math. Imaging: Wavelet Applications in Signal and Image
Processing 111, pp. 51-61, Part I, July 1995.

M. Unser, “Sampling-50 Years after Shannon,” Proc. IEEE, vol. 88,
no. 4, pp. 569-587, 2000.

M. Unser, A. Aldroubi, and M. Eden, “B-Spline Signal Processing:
Part I—Theory,” IEEE Trans. Signal Processing, vol. 41, no. 2,
pp. 821-833, Feb. 1993.

(28]

[29]

(30]

(31]

Zahid Hossain received the BSc degree in
computing science with a minor in telecommuni-
cation from North South University, Bangladesh,
in 2006. He is currently working toward the MSc
degree at the School of Computing Science,
Simon Fraser University, Canada. His research
interests include approximation and application
of signal processing techniques in computer
graphics and visualization. He is also interested
in illumination and GPU methods.

Usman R. Alim received the BS and BA
degrees in physics and mathematics, respec-
tively, from the University of Rochester, and the
MS degree in computer science from Rochester
Institute of Technology. He is currently working
toward the PhD degree at the School of
Computing Science at Simon Fraser University.
His research interests span the fields of compu-
ter graphics and visualization and include global
illumination, physically based modeling, and the
appllcatlons of optimal sampling lattices.

Torsten Moller received the vordiplom (BSc)
degree in mathematical computer science from
Humboldt University of Berlin, Germany, and the
PhD degree in computer and information
science from the Ohio State University in 1999.
He is an associate professor at the School of
Computing Science at Simon Fraser University.
His research interests include the fields of
visualization and computer graphics, especially
\ \ the mathematical foundations thereof. He is the
director of Vivarium, codirector of the Graphics, Usability and Visualiza-
tion Lab (GrUVi), and serves on the Board of Advisors for the Centre for
Scientific Computing at Simon Fraser University. He is the appointed
vice chair for publications of the IEEE Visualization and Graphics
Technical Committee (VGTC). He has served on a number of program
committees (including the Eurographics and the IEEE Visualization
conferences) and has been papers cochair for the IEEE Visualization,
EuroVis, Graphics Interface, and the Workshop on Volume Graphics as
well as the Visualization track of the 2007 International Symposium on
Visual Computing. He has also co-organized the 2004 Workshop on
Mathematical Foundations of Scientific Visualization, Computer Gra-
phics, and Massive Data Exploration at the Banff International Research
Station, Canada. He is currently serving on the steering committee of
the Symposium on Volume Graphics. Further, he is an associate editor
for the IEEE Transactions on Visualization and Computer Graphics
(TVCG) as well as the Computer Graphics Forum. He is a member of
the IEEE, the IEEE Computer Society, the ACM, the Eurographics, and
the Canadian Information Processing Society (CIPS).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



