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Abstract
The body-centered cubic lattice is the optimal sampling lattice in three dimensions. However, most volumetric
datasets are acquired on the well-known Cartesian cubic lattice. In order to leverage the approximation capa-
bilities of the body-centred cubic lattice, we propose a factor-of-four Cartesian to body-centered downsampling
transform. We derive a Fourier domain post-aliasing error kernel and use it to optimize the cosine-weighted tri-
linear B-spline kernel. We demonstrate that our downsampling transform preserves fidelity when an oversampled
function of interest is reconstructed with trilinear interpolation on the fine-scale Cartesian grid, and optimized
cosine-weighted trilinear approximation on the coarse-scale body-centered cubic grid.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction
The Cartesian cubic (CC) lattice Z3 is the de facto stan-
dard for the representation of volumetric data. It is con-
ceptually simple, easy to implement, and is supported by
modern graphics processing units (GPUs). Moreover, many
classical univariate signal processing techniques can eas-
ily be extended to the CC lattice via a tensor product. It
is well known that CC sampling is not optimal, and other
lattices such as the body-centered cubic (BCC) lattice and
the face-centered cubic (FCC) lattice are better, i.e. they can
represent a signal with similar fidelity with fewer samples.
Despite this, the CC lattice continues to enjoy tremendous
support owing to the widespread availability of acquisition
and processing tools. There has been a growing interest in
studying non-Cartesian cubic lattices in the graphics and
scientific visualization communities. Recent research advo-
cates using non-Cartesian lattices instead of the ubiquitous
CC lattice [ME10, Csé13, VCRG14]. In this work, we take
a slightly different stand and promote the BCC lattice as
a downsampled intermediate representation that achieves a
similar quality as compared to a fine-scale CC lattice.

Most comparisons of the cubic lattices are based on a
geometric argument that looks at the sphere packing effi-
ciency of the dual lattice in the Fourier domain [TMG01,
VCRG14]. Such a comparison is of theoretical interest but

is not completely applicable to practical scenarios since it
requires the use of infinitely supported multidimensional
sinc kernels [YE12]. For practical scenarios, compact ker-
nels are preferred since they result in efficient reconstruction
schemes. Motivated by these goals, we propose a practical
CC→BCC downsampling strategy that is firmly built upon
approximation theoretic principles. The relevance of trilin-
ear interpolation on the CC lattice can hardly be disputed.
Therefore, our proposed scheme is designed to achieve sim-
ilar quality on a coarse-scale BCC lattice as compared to
trilinear interpolation on a fine-scale CC lattice. Among
the plethora of kernels available for the BCC lattice, we
choose the recently proposed cosine-weighted linear B-
spline (CWLB) [Csé13] for its practical significance. In
order to compare the approximation quality, we derive a
Fourier domain post-aliasing error kernel and use it to show
that, when the original CC data is sufficiently oversampled,
using an optimized CWLB kernel for a downsampled repre-
sentation on the BCC lattice leads to a remarkable reduction
factor of 4 with very little loss of quality. We provide ex-
perimental results that validate our theoretical findings and
provide additional pointers of practical relevance.

2. Related Work
We restrict attention to works that have focused on designing
compact spline-like kernels for the 3D cubic lattices. The in-
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terested reader may also want to consult a multidimensional
signal processing textbook such as [DM84].

On the CC lattice, trivariate tensor-product extensions of
the univariate B-splines [UAE93] are a popular choice. Non-
separable spline kernels on the CC lattice have also been
investigated [Chu88, dHR93, Wan01]. Most kernels on the
BCC and FCC lattices are made up of box splines [dHR93].
Entezari et al. proposed second and fourth order box splines
for function approximation on the BCC lattice [EDM04].
They later derived closed from polynomial representa-
tions [EVM08], proposed quasi-interpolants [EMK09] and
implemented their efficient approximation algorithm on the
GPU [FEVM10]. Kim et al. investigated box-spline gen-
erators on the FCC lattice [KEP08], and later generalized
their construction scheme to the (non-Cartesian) root lattices
in arbitrary dimension [KP10, KP11]. The idea of succes-
sively convolving the indicator function of the Voronoi cell
has also been investigated. Mirzargar and Entezari proposed
Voronoi splines [ME10], as well as their associated quasi-
interpolants [ME11].

Multiresolution data representation on non-Cartesian cu-
bic lattices is still a relatively unexplored area of research.
Entezari et al. [EMBM06] proposed a subsampling strategy
that works in the Fourier domain by eliminating the out-of-
band portion of the spectrum. However, they did not account
for the effect of the reconstruction kernel.

Owing to their non-cubic support, piecewise polynomial
representation and GPU implementation of box-splines are
tricky. Our work is inspired by another construction that
aims to extend the trivariate tensor-product B-splines to the
BCC lattice [Csé10, DC10, Csé13]. Of all the known com-
pact admissible BCC kernels, these kernels provide the best
quality and can easily be implemented on modern GPUs.

3. Background
3.1. Sampling and Reconstruction
A sampling lattice L is a set of sampling points generated by
integer linear combinations of the columns of a generating
matrix L, i.e. L := {Lk : k∈Z3}. For example, when L = I,
the 3× 3 identity matrix, we obtain the familiar CC lattice
Z3. The BCC lattice B is obtained via the matrix

B =

 1 −1 −1
−1 1 −1
−1 −1 1

 . (1)

It is also a sub-lattice of the CC lattice obtained by retain-
ing those points whose coordinates are either all even or all
odd. The even points form a Cartesian coset generated by 2I.
The odd coset is given by {2k+(1,1,1) : k ∈ Z3}, i.e. it is
obtained by shifting the even coset by (1,1,1).

The density of a sampling latticeL is given by |detL|. Ob-
serve that, since |detB| = 4, the BCC lattice B is four times
less dense as compared to the CC lattice Z3. The BCC lat-
tice can therefore be normalized by multiplying B by −3

√
4.

The normalized BCC lattice is denoted as B0. The dual of a
lattice is denoted as L◦; it is generated by the matrix L−T .

The CC lattice is self-dual whereas the dual of a BCC lattice
is an FCC lattice.

In order to approximate a function f (x) via a lattice L,
one typically makes discrete measurements of f at the lat-
tice sites Lk (k ∈ Z3) to yield a coefficient sequence c[k]. A
linear combination of the lattice translates of a reconstruc-
tion kernel ϕ(x) then yields the desired approximation, i.e.

f̃ (x) = ∑
k

c[k]ϕ(x−Lk). (2)

Even though the lattice dependence of c[·] is not explicitly
indicated, it should be clear from the context established by
the reconstruction equation (2).

Trilinear Interpolation on CC Trilinear interpolation on
the CC lattice is well-known. A 3D tensor product of the
univariate linear B-spline β

1(x) := max(0,1−|x|) yields the
trivariate reconstruction kernel

L(x) := β
1(x1)β

1(x2)β
1(x3), (3)

where x = (x1,x2,x3). Trilinear interpolation on the CC lat-
tice is therefore achieved by

f (x)≈ f̃1(x) := ∑
k∈Z3

f [k]L(x−k), (4)

where f [k] := f (k) are the Cartesian samples of f . The ker-
nel is completely supported within a cube of volume 8 which
implies that upto 8 sample values contribute to the recon-
struction at a general position.

CWLB Approximation on BCC Cosine-Weighted triLin-
ear B-spline (CWLB) approximation [Csé13] on the BCC
lattice makes use of the kernel

Cλ(x) := L(
x
2
)
(

1
2 + λ

6 (cosπx1 + cosπx2 + cosπx3)
)
.︸ ︷︷ ︸

Wλ(x)

(5)

The corresponding approximation is therefore given by

f̃2(x) := ∑
k∈Z3

c[k]Cλ(x−Bk), (6)

where c[k] is a coefficient sequence associated with the BCC
lattice, and may or may not be the same as the samples of
the function f . Observe that the BCC approximation (6) is
at a coarser scale as compared to the CC approximation (4).
The kernel Cλ is compactly supported with a cube of vol-
ume 64. Since |detB| = 4, this means that upto 16 coeffi-
cients contribute to the reconstruction at a general position.
As shown by Csébfalvi [Csé13], the reconstruction is easily
implemented by first trilinearly interpolating on the even and
odd cosets separately, and then combining the results using
the weighting function Wλ. Thus, this reconstruction scheme
is more expensive but is easily implemented on GPUs by
taking advantage of GPU texture lookup capabilities. When
λ = 1, the kernel Cλ is interpolating. In this case, we can use
the lattice samples for interpolation, i.e. c[k] = f (Gk). On
the other hand, when λ 6= 0, a prefilter needs to be applied to
the samples of f to obtain the necessary coefficients c[·].
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3.2. Post-aliasing Error
In order to characterize the aliasing error for an approxima-
tion scheme, we assume that the Fourier transform of f is
isotropically bandlimited, i.e. f̂ (u) = 0 whenever ‖u‖ > 1

2 .
Recall that f̂ (u) :=

∫
R3 f (x)exp(−2πıu · x). The overall re-

construction error can be quantified in the Fourier domain by
measuring the deviation of the reconstruction kernel ϕ̂ from
the ideal kernel. Recall that the spectrum of the ideal ker-
nel is unity within the Voronoi cell of the dual L◦ centered
at the origin, and zero elsewhere. Assuming that the lattice
under consideration is properly normalized (|detL|= 1), the
overall reconstruction error ‖ f̂ − ˆ̃f‖2

L2
is given by∫

VL◦
| f̂ (u)|2

(
(1− ϕ̂(u))2 + ∑

r∈L◦\{0}
|ϕ̂(u− r)|2

)
du (7)

where VL◦ denotes the Voronoi cell of the dual lattice
centered at the origin. The first term quantifies smoothing
whereas the second term is a measure of post-aliasing. When
the data is oversampled, smoothing error is negligible and
post-aliasing error dominates. Using some simple algebraic
manipulations, we can express the post-aliasing term as fol-
lows. ∫

VL◦
| f̂ (u)|2 ∑

r∈L◦\{0}
|ϕ̂(u− r)|2du

=
∫
VL◦
| f̂ (u)|2

(
∑

r∈L◦
|ϕ̂(u− r)|2−|ϕ̂(u)|2

)
du

=
∫
VL◦
| f̂ (u)|2

(
Âϕ(u)−|ϕ̂(u)|2

)
︸ ︷︷ ︸

E(u)

du

Here Âϕ(u) :=∑r∈L◦ |ϕ̂(u−r)|2 is the discrete-time Fourier
transform of aϕ[k]: the autocorrelation of ϕ with respect to
the primal lattice L. Recall that, for a symmetric kernel ϕ,
aϕ[k] =

∫
R3 ϕ(x)ϕ(x−Lk)dx.

Similar error kernels have appeared in the signal pro-
cessing literature before [BU99, BTU01, CVDVB05], but
their use in the graphics/visualization literature is rather
sparse [AMC10]. For the sake of completeness, we have pro-
vided an intuitive alternate derivation. Note that our post-
aliasing error kernel E(u) is asymptotically equivalent to the
minimum-error kernel of Blu and Unser [BU99]. It is a pow-
erful tool as it can be evaluated in closed form provided that
the Fourier transform ϕ̂ and the autocorrelation spectrum Âϕ

are known. We can use it to compare the quality of differ-
ent lattice-generator combinations and to optimize paramet-
ric reconstruction kernels such as Cλ.

4. CC to BCC Downsampling
In order to derive a high quality CC→ BCC downsampling
filter, we first optimize the kernel Cλ and then orthogonally
project the fine scale trilinear reconstruction to the coarse
scale CWLB reconstruction space.

Optimized CWLB Approximation on BCC Since the
CWLB kernel Cλ is parametric, we seek a value of λ that
minimizes the integral

∫
VB◦0

Ebcc(u)du. Note that the inte-

gral is over the Voronoi cell of the normalized dual lattice
B◦0 (a rhombic dodecahedron), and Ebcc(u) denotes the nor-
malized post-aliasing error kernel. In order to simplify the
optimization problem, we take advantage of the fact that Cλ

is a second-order kernel. In other words Ebcc(u) = O(‖u‖4)
as u→ 0 [BU99]. Consequently, the dominant contribution
is due to the fourth-order Taylor series coefficients of Ebcc

and we may as well replace Ebcc by its fourth-order coef-
ficients. Using a computer algebra system (see supplemen-
tary material), we evaluated Ebcc is closed-form, determined
its fourth-order Taylor developments in terms of λ and eval-
uated the integral analytically over the rhombic dodecahe-
dron. This yields a quadratic polynomial in λ that can be
easily minimized. The optimal value of λ thus obtained is

λo =−
864(π2−9)

27π2(π2 +2)−416
≈−0.273512. (8)

Note that the optimal value is negative; this case was over-
looked by Csébfalvi [Csé13] even though they acknowl-
edged that any non-zero value of λ leads to a valid kernel.

Comparison of Trilinear and CWLB Kernels The ques-
tion of how trilinear interpolation on CC compares with opti-
mized CWLB approximation on BCC can also be answered
by investigating the normalized post-aliasing error kernels
Ecc and Ebcc. We fix the sampling rate on the CC lattice at
unity and look for a sampling rate h that yields the same
error, i.e.

∫
[−1/2,1/2]3 Ecc(u)du =

∫
VB◦0

Ebcc(hu)du. Equiv-

alently, at what sampling rate h does the optimized CWLB
approximation on the BCC lattice — generated by the ma-
trix −3

√
4hB — yield a similar quality as compared to trilin-

ear interpolation on a unit density CC lattice? The answer is
obtained via numerical integration (see supplementary mate-
rial) and found to be h = 1.61908. Note that this is remark-
ably close to 3

√
4 ≈ 1.5874, i.e. a BCC lattice which is 4

times less dense should provide a similar quality.

Downsampling Given sample values on a CC lattice, a
straightforward CC→BCC downsampling strategy is to sim-
ply retain the BCC points, and use prefilterd CWLB interpo-
lation [Csé13] (corresponding to Cλo

) on the resulting BCC
sample values. However, since our error bound is somewhat
loose, we compensate for it by seeking an error-minimizing
downsampling strategy that is inspired by the work of Hos-
sain et al. [HAM11]. Given a fine-scale CC reconstruc-
tion f1(x) (see (4)), a minimum-error approximation on the
coarse-scale BCC lattice B is obtained by orthogonally pro-
jecting f1 to the target reconstruction space. This is tanta-
mount to computing the coarse-scale BCC coefficients in (6)
according to [Uns00]

c[k] =
∫
R3

f1(x)C◦λ (x−Bk)dx, (9)

where C◦
λ

denotes the biorthogonal dual of Cλ. Observe
that f1 lies in the trilinear reconstruction space, and C◦

λ
=

∑k a−1
Cλ

[k]Cλ(x − Bk), where a−1
Cλ

[·] is the inverse auto-
correlation sequence. Therefore, the coarse-scale coeffi-
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(a) Truth (b) Trilinear

(c) CWLB (λ = λo) (d) CWLB (λ = 1)

Figure 1: Isosurface renderings of the ML test function: (a)
ground truth, (b) sampled on a 1283 CC grid, and (c–d) CC
representation downsampled on 643×2 BCC grids.

cients can also be obtained via the following two-step fil-
tering operation:
1. Convolve the CC samples f [·] with the CC filter σ[k] :=∫

R3 L(x)Cλ(x− k)dx. Subsample the resulting sequence
to BCC to yield the intermediate BCC sequence r[k] :=
( f ∗cc σ)[Bk].

2. Convolve the intermediate BCC sequence with the in-
verse auto-correlation sequence to yield the result, i.e.
c[k] = (r ∗bcc aC−1

λ

)[k].
It should be emphasized that the convolution in the first
step is on the CC lattice, whereas that in the second step
is on the BCC lattice. In practice, these convolutions can
be performed in the Fourier domain by using the multidi-
mensional fast Fourier transform (FFT) on CC and the BCC-
FFT [AM09] on the BCC lattice.

5. Results and Discussion
In order to validate our downsampling scheme, we point
sampled the popular test function of Marschner and Lobb
(ML) [ML94] on a 1283 CC grid. The calibration procedure
proposed by Vad et al. [VCG12] is not applied since the
ML function is well-above the Nyquist rate at this resolu-
tion. Using our downsampling scheme, we obtained 643×2
BCC representations that are suitable for both interpolat-
ing (λ = 1) and optimized (λ = λo) CWLB reconstruction.
For all cases, we rendered the isosurface corresponding to
an isovalue of 0.5. In order to approximate the gradient for
shading, we used the revitalization procedure of Alim et.
al [AMC10] to estimate the gradient using derivative filters.
On the BCC lattice, this procedure was applied to each CC
coset separately, and the results were combined using the
weighting function Wλ.
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Figure 2: RMS error vs. the total number of grid points.

Fig. 1 shows our results as compared to a ground truth
rendition obtained using the synthetic function itself. Even
though the data is oversampled, trilinear interpolation on CC
shows some post-aliasing. As expected, the optimized down-
sampled BCC rendition (λ = λo) is very close to the fine-
scale CC rendition and remarkably different from the unop-
timized downsampled rendition (λ = 1). Fig. 2 compares the
root mean square (RMS) trilinear reconstruction error (mea-
sured using 106 points randomly distributed within the cube
[−0.5,0.5]3) for the ML function as the CC grid resolution
is increased from 323 to 5123. The corresponding downsam-
pled CWLB reconstruction errors (for the cases λ = λo and
λ = 1) are also shown. Observe that, when the data is sam-
pled below the Nyquist limit (323), downsampled CWLB re-
construction is worse as compared to trilinear interpolation.
On the other hand, when the data is oversampled, down-
sampled CWLB interpolation (λ = 1) is only slightly worse
than trilinear interpolation but, as predicted, downsampled
CWLB approximation (λ = λo) is actually slightly better
even though the data is four times coarser.

6. Conclusion
We optimized the CWLB kernel on the BCC lattice using
a post-aliasing error kernel and derived a CC→BBC down-
sampling scheme that leads to a 75% data reduction when
the original CC data is sufficiently oversampled. Our down-
sampling filter is infinitely supported and needs to access the
entire volume. However, it is straightforward to derive com-
pactly supported approximations that would be more suit-
able for on-the-fly downsampling for streaming data. Fur-
thermore, since CWLB reconstruction makes use of trilinear
interpolation on the constituent CC cosets, it is also possible
to take advantage of existing CC bricking or compression
schemes to handle large volumetric datasets. Thus, our pro-
posed downsampling scheme can potentially lead to a sig-
nificant data reduction with minimal loss of quality.
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