
Evaluating Box Splines with Reduced Complexity

Joshua Horacsek∗, Usman Alim
Department of Computer Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4

Abstract

For the class of non-degenerate box splines, we present a set construction scheme that yields the
explicit piecewise polynomial form for an arbitrary box spline. While it is possible to use the
well known recursive formulation to obtain these polynomial pieces, this is quite expensive. Our
construction is theoretically less expensive than the recursive formulation and allows us to evaluate
box splines with more direction vectors than what would be feasible under the recursive scheme.
Finally, using the explicit polynomials in each region of the box spline, we show how to create fast
evaluation schemes using this explicit characterization and a spatial data structure.

1. Introduction

Box splines are a multivariate generalization of B-splines [2] that are particularly useful in
visualization and signal processing applications. They allow practitioners to tailor approximation
schemes (on regular grids) to specific computational and theoretical parameters. These parameters
include support size (how many samples are needed to reconstruct a value), smoothness of recon-
struction, and order of approximation. There is particular interest in using box splines to span
approximation spaces on non-Cartesian lattices, since certain non-Cartesian lattices, like the Body
Centered Cubic (BCC) lattice, allow more efficient sampling and reconstruction schemes [6].

Typically, to evaluate a box spline, one either relies on the recursive scheme [2, 1, 7], or one
must derive an explicit representation of the spline which has so far been done on a case-by-case
basis (see [3] as an example). In this paper, we derive an explicit form for a box spline’s piece-
wise polynomial — this form is analogous to the well known piecewise polynomial expression for
B-splines. We give a set construction recipe that yields the explicit truncated piecewise polyno-
mial form for any box spline. From this, we derive the explicit polynomial within each region of
evaluation. We note that this can also be accomplished by using the recursive form of evaluation
restricted to a particular region of a spline. Once these have been computed, we construct a binary
space partitioning tree that partitions the support of the box spline into regions of evaluation. Each
leaf of the tree is then assigned an explicit polynomial. To evaluate the box spline, one must simply
traverse the tree to determine the region of the mesh, then evaluate the polynomial in that region.

∗Corresponding author
Email addresses: joshua.horacsek@ucalgary.ca (Joshua Horacsek), ualim@ucalgary.ca (Usman

Alim)

Preprint submitted to Journal of Approximation Theory January 24, 2018

When one wishes to evaluate a box spline, the task is not so trivial. The most widely known
evaluation scheme is likely de Boor’s recursive formula [2]. Unfortunately, this is quite unstable
and quite expensive to evaluate, de Boor proposed a solution to this, but the solution is still not
completely robust in dimensions higher than 2 [7, 5]. Kobbelt attempted to analyze and address
these issues [1], yet there still appears to be numerical instabilities in high dimensions [5]. More-
over, these evaluation schemes tend to be fairly slow as they are recursive and rely on solving a
system of equations at each step of the recursion. There are heuristics that may overcome some
issues with this form, but it is generally accepted that creating some explicit representation within
each region of the box spline’s mesh, then using that explicit form of evaluation is much more
computationally efficient.

In the work of Kim et al. [5], a fast and stable scheme is derived by creating an indexing
system that quickly identifies each region of evaluation within the box spline’s mesh. Within each
region of evaluation, the Bernstein Bézier (BB) form of the piecewise polynomial is then derived
from a stable form of the recursive evaluation formula. However, there are a few pitfalls to this
method. Firstly, it relies on a stable evaluation scheme to derive the BB form of each polynomial.
Secondly, its indexing scheme must be derived on a case-by-case basis and is only provided for
particular box splines with Cartesian-like meshes. Finally, it relies on certain assumptions about
the direction vectors that constitute a box spline, namely that they are rational.

The only assumptions we make in this work are that our direction vectors are real-valued,
and must span the target space Rs. Additionally, the method proposed in this work is exact, our
decomposition makes no approximations, and only relies on operations that are performed exactly
within a machine. Additionally, our work may be used to augment other evaluation schemes. For
example, we may use our results to speed up the precomputation step of the work by Kim et al. [5].
Conversely, if a box spline has appropriate structure, we may use said work of Kim et al. to derive
a slightly more efficient indexing scheme of a box spline’s mesh.

When compared to de Boor’s well known recursive evaluation scheme [2, p. 17], we find that
our decomposition often takes significantly fewer operations for more direction vectors. However,
they work by different mechanisms — the recursive evaluation scheme uses the property that eval-
uation of a box spline is equivalently stated as a weighted sum of smaller box splines. Our method
is to split the box spline into two spatial parts, the difference operator and Green’s function.

The Fourier representations of these two parts of a box spline are known in closed form and
are quite simple to characterize. Their spatial characterizations are less simple. However, in this
work we are able to derive their spatial forms from a series of set constructions. The final result
comes from a semi-discrete convolution between these two representations. The paper proceeds
as follows. In Section 2, we provide a basic introduction to box splines and the notation we use
to proceed with this work. In Section 3, we derive the spatial form for the difference operator via
a simple set construction akin (i.e. distributionally equivalent) to the inverse discrete time Fourier
transform of the difference operator. We proceed in Section 4 to construct the spatial form of the
Green’s function. At first glance, the Fourier form of the Green’s function appears to be non-
separable, which complicates obtaining a spatial representation. However, by constructing vectors
from the kernel of the matrix that defines a box spline, we can always construct a distributionally
equivalent form that is separable, and therefore has an inverse Fourier transform that is easy to

2

characterize. We then combine those forms via a semi-discrete convolution. In Section 5, we
show how to use the difference operator and the Green’s function to perform stable pointwise
evaluation; we also provide bounds on the number of operations needed for evaluation at a single
point. This form, while theoretically faster than the recursive form, is still quite expensive to
evaluate pointwise. In Section 6, we show how to use the previous results to derive the explicit
piecewise polynomial for each polynomial region; we then show how to build a fast tree structure
to index these regions, which fulfills the promise of fast evaluation. Finally, in Section 7, we
provide exemplary constructions for some known box splines.

2. Background

Following the established notation [2], we define a box spline as a generalized function MΞ :
Rs → R which is characterized by a list of n column vectors ξ1 ξ2 · · · ξn, with each ξi ∈ Rs, that
are collected in an s× n matrix Ξ := [ξ1 ξ2 · · · ξn] .

The function MΞ is defined recursively by the convolution equation

M[] := δ and MΞ :=

∫ 1

0

MΞ\ζ(· − tζ)dt (1)

where δ is the Dirac delta distribution. We say the box spline is non-degenerate if the dimension
of the range of Ξ is s. When we speak of the kernel of a matrix, we speak of a specific basis for
the null-space of that matrix. We explicitly choose the basis for the kernel so that it is in column
echelon form. We use the notation kerX as shorthand for the null-space of X . For example, ker Ξ
is the n× (n− s) matrix that forms a basis for the null-space of Ξ and is in column echelon form.
We write z ∈ kerX if Xz = 0.

If a hyperplane defined by columns of Ξ forms an s − 1 dimensional subspace of Rs, then we
collect it in the set H(Ξ). Since our direction vectors are real valued, we define the mesh of Ξ as

Γ(Ξ) :=
⋃
H∈H

H + ΞZn. (2)

We denote the Fourier equivalence between two functions with the symbol “←→”. For ex-
ample, the function f(x) has the Fourier transform f̂(ω), which we also write as f(x) ←→
f̂(ω). We use the convention that the Fourier transform is defined distributionally as f̂(ω) :=∫
Rs f(x) exp(−iω ·x)dx. Of pivotal importance to us is the Fourier representation of a box spline

M̂Ξ(ω) =
n∏
j=1

1− exp(−iω · ξj)
iω · ξj

(3)

which we split into two functions, the difference operator

∇̂Ξ(ω) :=
n∏
j=1

1− exp(−iω · ξj) (4)

3

and the Green’s function

ĜΞ(ω) :=
n∏
j=1

(iω · ξj)−1 (5)

which, when applied with D̂Ξ :=
∏n

j=1 iω · ξj produces the Dirac impulse.
To index an element of a vector β we write β(j) where j is an integer index. We also define

the n-dimensional vector w as w(j) := iξj · ω. For the α-power function, we use the definition
xα :=

∏m
j=1 x(j)α(j) where x is an m-dimensional variable. It should be understood that by x−α

we explicitly mean 1/xα. With these notations, the Green’s function (5) can be written more
succinctly as ĜΞ(ω) = w−1.

We also adopt the notations

[[x]]α :=
m∏
j=1

x(j)α(j)

α(j)!
, (6)

[[x]]αsgn :=
m∏
j=1

(x(j))α(j)
sgn

α(j)!
, (7)

[[x]]α+ :=
m∏
j=1

(x(j))α(j)
+

α(j)!
, (8)

for the normalized, normalized signed and normalized one-sided α-power functions respectively.
In the above, (x)ksgn := xksgn(x)/2 and (x)k+ := xkH(x) whereH(x) is the heaviside distribution.
We write ||α||0 to count the non-zero elements within α. If α is an n-dimensional vector, we can
write the s × ||α||0 matrix Ξα, which denotes the subset of Ξ that are selected by the non-zero
α(j). Finally we use 0,1 to denote vectors consisting of all 0 or 1 respectively, and the dimension
of the vector should be inferred from context in which it is being used.

The crux of this work is establishing explicit representations of the spatial forms of the differ-
ence operator and the Green’s function of the box spline. The final piecewise polynomial form will
result from the semi-discrete convolution of these two forms.

3. Difference Operator

The difference operator has a simple characterization in the spatial domain which can be con-
structed with the help of the following definition.

Definition 3.1. For an s × n matrix Ξ with full rank, define the sequence of multi-sets SΞ by the
rules

S[] := {(1,0)} and SΞ :=
{

(−c, ξ + p) : (c,p) ∈ SΞ\ξ
}
∪ SΞ\ξ. (9)

For each tuple in each multi-set of this sequence, the first element of the tuple is a scalar value and
the second element is a vector in Rs.

From this definition we derive the following lemma.

4

Lemma 3.2. Let Ξ be an s × n matrix with full rank, then the difference operator ∇Ξ for MΞ is
given by the distribution

∇Ξ =
∑

(c,p)∈SΞ

c δ(· − p) (10)

where δ is the Dirac delta distribution.

Proof. We show this inductively on the number of columns of Ξ. As a base case, assume Ξ contains
a single non-zero direction vector, ζ. By definition, we have

SΞ = {(1,0), (−1, ζ)}.

We also have ∇̂Ξ = 1 − exp(iζ · ω) which has the spatial form ∇Ξ = δ − δ(· − ζ) which is by
definition

∇Ξ =
∑

(c,p)∈SΞ

c δ(· − p). (11)

For the general case, pick some Ξ with n > 1 columns, and suppose that for any Ξ′ with i < n
columns this result holds. Then split Ξ into an s by (n − 1) matrix Ξ′ and column vector ζ, and
consider the difference operator∇Ξ′∪ζ . From the Fourier expression we have

∇̂Ξ = ∇̂Ξ′∪ζ =
∏

ξ∈Ξ′∪ζ

(1− exp (−iξ · ω)) = (1− exp(−iζ · ω)) ∇̂Ξ′ ,

which is equivalently stated in the spatial domain as

∇Ξ = ∇Ξ′∪ζ = ∇Ξ′ −∇Ξ′(· − ζ). (12)

The inductive hypothesis then gives

∇Ξ′∪ζ =
∑

(c,p)∈SΞ′

c δ(· − p) +
∑

(c,p)∈SΞ′

−c δ(· − (p+ ζ)) (13)

and it follows, by definition of SΞ, that

∇Ξ = ∇Ξ′∪ζ =
∑

(c,p)∈SΞ

c δ(· − p) (14)

which completes the induction.

From this, the following corollary is clear.

Corollary 3.2.1. For any SΞ, if we there exists two tuples (a,p) and (b, q) ∈ SΞ with the property
p = q then those two tuples may be removed and be replaced by (a+ b,p), leaving Definition 3.1
unaffected.

5

4. Green’s Function

The Green’s function of a box spline allows us to characterize the polynomial within each
region of the box spline’s mesh via semi-discrete convolution with the box spline’s difference
operator in the spatial domain. To do this, we need the spatial form of the Green’s function. At
first this appears quite difficult as the convolutional definition gives no information regarding the
Green’s function of a box spline. Turning to the Fourier form appears to be more tractable, but
the non-separability of the Fourier form seems prohibitive. The approach is to look at the non-
separable Green’s function and apply a series of transformations so that ĜΞ(ω) = w−1 becomes
separable. More explicitly, we hope to split w−1 into a sum of weighted terms w−1 = c1w

−α1 +
· · ·+cjw

−αj where eachαi has the property ||αi||0 = s and is thus separable. This is an approach
taken in the scientific visualization literature to derive fast evaluation schemes for certain box
splines [3], and we generalize it here. The observation to make is that if we choose any vector
v ∈ ker Ξ, then v · w = 0. This allows us to write w−1 = w−1 v(i)w(i)−v·w

v(i)w(i)
, provided v(i) 6= 0.

This reduces the zero-norm of the exponents in the resultant expression by one. The question then
becomes, how do we choose vectors from the kernel so that, after repeated applications of this
process in general, we decrease the zero-norm of every exponent to s? This is formalized in the
following definition.

Definition 4.1. Take Ξ to be an s× n matrix with full rank, and take any α with dimension n and
s < ||α||0 ≤ n. Let b′1 · · · b′n be the rows of ker Ξ, then construct an (n− ||α||0)× (n− s) matrix
Cα where b′j is included in this matrix iff α(j) = 0. Let tα be the first column vector of kerCα,
then define να := ker Ξ · tα. If ||α||0 = n then such a vector does not necessarily exist, in this
case we take να as the first column vector of ker Ξ.

The vectors να are the exact vectors we need to incrementally decompose w−1, we first note
that each να has the following property by construction.

Proposition 4.2. For Ξ and α as above, the vector να has the property that if α(j) = 0 then
να(j) = 0.

Proof. This is immediate if ||α||0 = n. So suppose that s < ||α||0 < n, and suppose that α(j) = 0
and να(j) 6= 0. But then we have b′j · tα 6= 0 so it must be that tα /∈ kerCα.

We now define a sequence of sets Pk that will use Definition 4.1 to recursively decompose the
Green’s function. The elements of Pk will represent the terms c1w

α1 + ... + cjw
αj = GΞ(ω)

in the previous discussion — we will eventually prove that, as k gets larger, the zero norm of the
exponents in Pk decreases. The terms in this sum are encoded as the tuples (ci,αi) in the following
definition.

Definition 4.3. Let Ξ be an s × n matrix with full rank, define the sequence of sets P recursively
by the rules

P0 := {(1,1)} (15)

Pk :=

{(
−c να(j)

να(mα)
, rj(α)

)
: (c,α) ∈ Pk−1,mα < j ≤ n, να(j) 6= 0

}
(16)

6

with mα := min{i : να(i) 6= 0} and the vector function rj defined as

rj : Zn → Zn : α(i) 7→


α(i) + 1 , if i = mα

α(i)− 1 , if i = j
α(i) , otherwise

(17)

and k ≤ n− s. Here, each Pi is a set of tuples where the first element of each tuple is a real scalar
value, and the second element is a vector in Rn.

Before we use this set to decompose the Green’s function of MΞ, we need some supplementary
results.

Proposition 4.4. If (c,α) ∈ Pk, then for all l such that mα < l ≤ n, we have

α(l) ∈ {0, 1}. (18)

Proof. If k = 0, then this is true by definition. Next, for the inductive case, suppose that this is true
for all j such that 0 ≤ j < k, and pick any (c,α) ∈ Pk. Since k > 0, there exists a (d,β) ∈ Pk−1

such that c = −d νβ(l)

νβ(mβ)
, and α = rl(β), for some l and mβ . If mα ≥ mβ, then β(i) ∈ {0, 1}, for

all i such that mβ < i ≤ n, but by construction in Equation (16), we know α(i) ∈ {0, 1} for all
mβ < i ≤ n. But then α(i) ∈ {0, 1} for all mα < i ≤ n, which completes the proof. So suppose
that mα < mβ . Recall by construction, we have να(mα) 6= 0 and νβ(mβ) 6= 0. Combine this fact
with the definition να := ker Ξtα, νβ := ker Ξtβ, and with the fact that ker Ξ is in column echelon
form, we have

min{i : tα(i) 6= 0} < min{i : tβ(i) 6= 0}. (19)

Since tβ ∈ kerCβ forces certain elements of β to be zero, and tα forces the same elements of α
to be zero (and perhaps more), we know tα ∈ kerCβ as well. But then tβ could not have been the
first column of kerCβ , since there exists a column with a lower-indexed, non zero row (by equation
(19)), and kerCβ is in column echelon form.

There is however, one case left to show, since for k = 1, no such tβ exists. Thus if k = 1,
choose any (c,α) ∈ P1, and let (d,β) ∈ P0 (chosen as above). Again, by the same logic as above,
if mα ≥ mβ, then the proof is completed. So suppose that mα < mβ . But since both να ∈ ker Ξ
and νβ ∈ ker Ξ, να(mα) 6= 0 and ν(mβ) 6= 0 and ker Ξ is in column echelon form, this contradicts
our choice of να since it could not have been the first column of ker Ξ.

Proposition 4.5. If (d,β) ∈ Pk for 0 ≤ k < n− s, and (c,α) ∈ Pk+1, with

c = −d νβ(j)

νβ(mβ)
, and α = rj(β) (20)

for some mβ < j ≤ n, then
||α||0 = ||β||0 − 1. (21)

Proof. We show this directly. Choose any (d,β) ∈ Pk and (c,α) ∈ Pk+1 as stated in the propo-
sition. Then, by Proposition (4.4), we know that β(i) ∈ {0, 1} for all i such that mα < i ≤ n, by
construction in Equation (16) exactly one of these non-zero β(i) will be decremented (and β(mβ)
will be incremented) to become α, thus ||α||0 = ||β||0 − 1.

7

Proposition 4.6. If (c,α) ∈ Pk, 0 ≤ k ≤ n, then Ξα has full rank.

Proof. For P0 this is holds by assumption. Next, assume this holds for all (d,β) ∈ Pj where
0 ≤ j < k. Pick any (c,α) ∈ Pk. There exists some (d,β) ∈ Pk−1, such that α = rl(β) with
mβ < l ≤ n, for some mβ and l. By construction of α in Equation (16), we have Ξβ 6= Ξα. But by
Proposition 4.5, these differ by exactly one column vector, specifically Equation (16) tells us that
we have ξl ∈ Ξβ , and ξl /∈ Ξα. It remains to show that ξl can be written as a linear combination of
vectors only in Ξβ (not including ξl itself). But we also know

n∑
i=1

ξiνβ(i) = 0 (22)

since νβ ∈ ker Ξ. By Proposition 4.2, we can write this as

n∑
i=1,i 6=l

ξiνβ(i) = −νβ(l)ξl. (23)

with νβ(l) 6= 0 by construction in Definition (4.3). Note that all the non-zero elements of νβ
correspond to column vectors of Ξβ thus we can write ξl as the weighted sum of vectors from Ξβ.
Since Ξβ had full rank, Ξα has full rank, completing the induction.

Lemma 4.7. Let Ξ be an s× n matrix with full rank, then

ĜΞ(ω) =
∑

(c,α)∈Pk

c w−α (24)

for 0 ≤ k ≤ n− s.

Proof. When k = 0 the result is true by definition. Suppose the result holds for all j such that for
0 ≤ j < k. By assumption we have

ĜΞ(ω) =
∑

(c,α)∈Pk−1

c w−α. (25)

Next, since να ∈ ker Ξ we have να ·w = 0, re-arranged this is

να(mα)w(mα)− να ·w
να(mα)w(mα)

= 1. (26)

So we certainly have

ĜΞ(ω) =
∑

(c,α)∈Pk−1

(c w−α)
να(mα)w(mα)− να ·w

να(mα)w(mα)
(27)

=
∑

(c,α)∈Pk−1

n∑
l=mα+1

−c να(l)

να(mα)
w−rl(α) (28)

8

which is, by definition, ∑
(c,α)∈Pk

c w−α, (29)

completing the induction.

Similar to Corollary 3.2.1, it follows that we can collect like terms at each iteration of this set
construction, which is summarized in the following Corollary.

Corollary 4.7.1. If we have two tuples (a,α), (b,β) ∈ Pk with α = β, then we may replace them
both by a single tuple (a+ b,α).

The next definition helps us “squish” n-dimensional vectors into appropriate s-dimensional
vectors, which will aid in the transformation from Fourier form to the final spatial form.

Definition 4.8. For any α of dimension n with ||α||0 = s define µα as the s-dimensional vector
obtained by retaining the non-zero elements of α. Define also the corresponding vector σα that
indexes the non-zero elements of α.

For example, if s = 2 and α = (0, 2, 0, 1), then µα = (2, 1) and σα = (2, 4). With this, we
now define a helpful auxiliary function.

Definition 4.9. For any α with dimension n and ||α||0 = s, define the function

Tα(ω) :=
s∏
j=1

1

iω(j)µα(j)
.

Proposition 4.10. For any α with dimension n and ||α||0 = s then

Tα(ω)←→ [[x]]µα−1
sgn .

Proof. Using the Fourier equivalence

1

(iω)k
←→

(x)k−1
sgn

(k − 1)!
, k ∈ Z+, (30)

we write

Tα(ω) =
s∏
j=1

1

iω(j)µα(j)
←→

s∏
j=1

(x(j))
µα(j)−1
sgn

(µα(j)− 1)!
= [[x]]µα−1

sgn

by definition.

Proposition 4.11. For any s×nmatrix Ξ with full rank, and anyαwith dimension n and ||α||0 = s
then

w−α ←→
[[Ξ−1

α x]]
µα−1
sgn

| det Ξα|
.

9

Proof. Since ||α||0 = s we can write

w−α =
s∏
j=1

1

w(σα(j))µα(j)
(31)

=
s∏
j=1

(iξσα(j) · ω)−µα(j) (32)

= Tα(ΞT
αω), (33)

and
Tα(ΞT

αω)←→ | det Ξ−1
α |[[Ξ−1

α x]]
µα−1

sgn . (34)

Lemma 4.12. Let Ξ be an s× n matrix with full rank, then

GΞ(x) =
∑

(c,α)∈Pn−s

c

| det Ξα|
[[Ξ−1

α x]]
(µα−1)

sgn . (35)

Proof. Starting with
ĜΞ(ω) =

∑
(c,α)∈Pn−s

cw−α. (36)

then using Propositions 4.5 and 4.11 we obtain the form stated in the lemma, the only thing left to
check is that this is well defined, .i.e we must verify that det Ξα 6= 0, but this is true by Proposition
4.6.

Theorem 4.13. Let Ξ be an s × n matrix that corresponds to a non-degenerate box spline, then
the box spline is given by

MΞ(x) =
∑

(b,p)∈SΞ

∑
(c,α)∈Pn−s

b · c
|det Ξα|

[[(Ξ−1
α x)− p]]

(µα−1)

+ . (37)

Proof. This is a direct consequence of Lemma 3.2 and 4.12, combined with the fact that the differ-
ence operator annihilates all polynomials of degree lower than the order of the spline [2, I.32].

One can think of this as a generalized version of the one dimensional expression for B-splines

βn(x) =
n+1∑
j=0

(−1)j
(
n+ 1

j

)
[[x− j]]n+ (38)

where n is the order of the un-centered B-spline.

10

5. Evaluation at a Point

While the form in Equation (37) is explicit, it is important to note that it is a distributional
equality. In general, it may be that the term [[(Ξ−1

α x)− p]]
(µα−1)
+ , which, even though we perform

all arithmetic exactly within a computer algebra system, involves computing a discontinuous step
function, which is in general not computable [1]. This is also an issue when using the recursive
evaluation scheme, given by

(n− s)MΞ(x) =
∑
ξ∈Ξ

tξMΞ\{ξ}(x)− (1− tξ)MΞ\{ξ}(x− ξ) (39)

with t = ΞT (ΞΞT)−1x [2, p. 17]. When the evaluation point is on a knot plane, one way to
overcome numerical instabilities is to evaluate portions of (37) away from the knot plane. This
effectively pushes the evaluation into the interior of one of the mesh’s regions. That is, if we have
any point x ∈ H , then we choose some vector εwith sufficiently small length such that ε+x /∈ H .
We then note that we may split

[[(Ξ−1
α x)− p]]

(µα−1)

+ = [[(Ξ−1
α x)− p]]

0

+[[(Ξ−1
α x)− p]](µα−1).

Where [[(Ξ−1
α x)− p]]

0
+ is a discontinuous “indicator” (i.e. a step function) and [[(Ξ−1

α x)− p]](µα−1)

is the polynomial part. In fact, when ||ε||2 is small enough, we may write

[[(Ξ−1
α x)− p]]

(µα−1)

+ = [[(Ξ−1
α (x− ε))− p]]

0

+[[(Ξ−1
α x)− p]](µα−1)

this effectively pushes the evaluation of [[(Ξ−1
α x)− p]]

0
+ away from a knot into one of the surround-

ing regions, however the term [[(Ξ−1
α x)− p]](µα−1) remains on the plane, which is valid because it

is a polynomial and therefore continuous; only, of course, provided that the box spline is contin-
uous at x. This is similar to the method used by de Boor to increase the stability of the recursive
evaluation scheme [1]. This gives the following scheme

MΞ(x) =
∑

(b,p)∈SΞ

∑
(c,α)∈Pn−s

b · c
|det Ξα|

[[Ξ−1
α (x− ε(x))− p]]

0

+[[(Ξ−1
α x)− p]](µα−1) (40)

with

ε(x) :=

{
ε if x ∈ H
0 otherwise.

(41)

Again, we push the evaluation of the step function in Equation (37) into the interior of a region
where it is computable, but we leave the value of x untouched in the evaluation of the polynomial.
We dislike the need for a “fudge” factor ε, we would prefer a method that is general and stable
regardless. Moreover, we find that the sets Pn−s and SΞ can get quite large, so evaluation of
Equation (40) can get quite expensive. We will return to the question of fast evaluation in the
next section, where we use (37) to derive the explicit piecewise polynomials within each region of

11

the box spline mesh, in conjunction with a binary space partitioning tree to efficiently index these
polynomials.

It is important to note that, even with the trick of evaluating parts of Equation (37) away from
the knot planes, evaluating Equation (40) with floating point arithmetic may propagate floating
point round-off error worse than the recursive scheme. To this end, it is better to use Equation (37)
with to derive the explicit polynomial for that region, then use a Horner scheme to efficiently
evaluate this polynomial with reduced error [8, 9]. We now proceed to bound the size of the sets
Pn−s and SΞ, which will allow us to bound the complexity of (40).

12

Proposition 5.1. For the sets SΞ and Pj we have the following bounds on their sizes

|SΞ| ≤ |Ξ {0, 1}n| and |Pj| ≤ p(n, n− j)
(

n− 1

n− j − 1

)
(42)

where p(n, k) is the number of partitions of the integer n of size k and the set Ξ {0, 1}n is the
set of distinct points obtained by projecting the vertices of the unit n-dimensional cube into s-
dimensional space using the Ξ matrix.

Proof. To see the first inequality, we note that each tuple (a,p) ∈ SΞ has the property that p is
the sum of some subset of the vectors in Ξ. To see this we notice that p corresponds to some
term in

∏n
j=1 (1− exp(−iξjω)) . Thus, we know there is at least one element in the pre-image

x ∈ {0, 1}n such that Ξx = p. However, not every x ∈ {0, 1}n maps to some such p, this
establishes the inequality. A simple counting argument gives the second bound — consider the
elements of Pj , they are of the form (c,α). Note that we have

∑
α(i) = n. Moreover, we also

know that the non zero elements of α are ordered and that ||α||0 = n − j, thus we conclude that,
if we remove the zeros from α we have a partition of n with size n − j. Thus, since Pj has no
elements with duplicateα, if we remove the zeros from eachα we end up with at most p(n, n− j)
unique elements. To arrive at a bound on |Pj| we must add back the zeros. If we take any partition
of n of size n− j, we must add exactly n− j zeros. There are exactly j positions to insert the zeros
in the partition (Definition 4.3 disallows an insertion at the start of the vector, all other locations
are valid), this can be done in

(
n−1
n−j−1

)
ways, giving the second bound.

Corollary 5.1.1. Evaluating Equation (40) has complexity O(Ce(n, s)) where

Ce(n, s) := |Ξ {0, 1}n| p(n, s)
(
n− 1

s− 1

)
.

We find it interesting to compare this to the cost of the recursive evaluation, which has cost
Cr(n, s) := 2n−s n!

s!
at a single point [1]. Our bound, however, is dependent on the structure of the

box spline and not just the number of direction vectors n. This is convenient in deriving tighter
bounds for specific Ξ, but makes analysis difficult for general n. We can, however, create a more
conservative general bound by noting that the worst case size of |Ξ {0, 1}n| is 2n, thus we have the
looser bound

C̃e(n, s) := 2np(n, s)

(
n− 1

s− 1

)
withCe(n, s) ≤ C̃e(n, s).We have calculated this bound and presented it for s = 2 and 3 in Table 1
and Table 2 respectively. It is important to note that this is a bound on the number of operations
required and not a strict cost, as in the case of the recursive form. In practice we have found that
there are often less elements in the sets Pn−s and SΞ but this is highly dependent on the choice of
Ξ. In the same vein, it is also likely possible to use memoization techniques to slightly reduce the
cost of recursive evaluation, however, this is already somehow “pre-baked” into our method — no
memoization is needed.

The bound C̃(n, s) has behaviour similar to that of Pascal’s triangle — with n fixed, as s
increases Ce increases, but when s passes a threshold, Ce decreases. The behaviour of this bound
is slightly skewed and is shown in Figure 1.

13

n 2 3 4 5 6 7 8 9 10

C̃e(n, 2) 4 16 96 256 960 2,304 7,168 16,384 46,080
Cr(n, 2) 1 6 48 480 5,760 80,640 1,290,240 23,224,320 464,486,400

Table 1: A comparison between the bound on the number of operations required to evaluate Equation 40 when s = 2
in the first row, and the number of operations required for the recursive evaluation, the second row.

n 3 4 5 6 7 8 9 10

C̃e(n, 3) 8 48 384 1,920 7,680 26,880 100,352 294,912
Cr(n, 3) 1 8 80 960 13,440 215,040 3,870,720 77,414,400

Table 2: A comparison between the bound on the number of operations required to evaluate Equation 40 when s = 3
in the first row, and the number of operations required for the recursive evaluation, the second row. Notice that as s
grows, the bound C̃e grows.

n = 1: 2

n = 2: 4 4

n = 3: 8 16 8

n = 4: 16 96 48 16

n = 5: 32 256 384 128 32

n = 6: 64 960 1920 1280 320 64

Figure 1: The triangle of ˜C(n, s). The value of s varies from 1 to n as the values move left to right. The maximal
values are found roughly in the center of the rows.

14

6. Fast Evaluation

While it is possible to use Equation (40) as a stable form of evaluation, we prefer a different
approach. We prefer to modify Equation (37) to yield an explicit polynomial within each region of
the box spline mesh. Similar to the above section, we may obtain the polynomial piece for some
region R with the formula

PR(x) :=
∑

(b,p)∈SΞ

∑
(c,α)∈Pn−s

b · c
|det Ξα|

[[Ξ−1
α cR − p]]

0

+[[Ξ−1
α x− p]](µα−1) (43)

where we choose cR as the center of the region R, but it could be any interior point of R. To see
why this is correct, we take any x ∈ Ro and notice that if [[Ξ−1

α x− p]]
0
+ = 1 then we know that

the polynomial [[Ξ−1
α x− p]](µα−1) contributes to the polynomial in region R. We sum all of these

in Equation (43), which yields the polynomial for this region.
We note that it is also possible to obtain the explicit piecewise polynomial regions via a slight

modification to the recursive evaluation scheme. This however, is also done in O(2n−s n!
s!

), per
region which is quite expensive. Once the sets Pn−s and SΞ have been computed, the cost of
computing PR(x) for one region is O(Ce(n, s)). There is also a cost to computing Pn−s and SΞ,
which can be obtained via summing the magnitude of each set in each recurrence. This gives the
following result

Proposition 6.1. The sets Pn−s and SΞ can be computed in

O

(
p(n)

(
n− 1

b(n− 1)/2c

))
and O(n|Ξ{0, 1}n|)

operations respectively, where p(n) is the total number of partitions of the integer n.

The procedure for a fast and stable evaluation scheme can be outlined as follows. In a pre-
computation step, compute the sets Pn−s and SΞ. Next, compute each region of the box spline by
slicing the support of the box spline by the knot-planes of the mesh. Now that we know which
regions contain distinct polynomials, for each region compute the polynomial within that region
using Equation (43). Finally, build a binary space partitioning (BSP) tree that uses the knot planes
as internal nodes to partition space into each region. At evaluation time, one simply traverses this
tree and uses the stored polynomial at a leaf to compute the value of the box spline. If k is the
number of regions, this happens in O(log(k)

(
d+s
s

)
) time, where d is the degree of the polynomial

pieces of the box spline, assuming the most naı̈ve evaluation scheme for a polynomial.
The precomputation step is outlined in Algorithm (1) and the evaluation at a point is outlined

in Algorithm (2). In the following algorithms there are two object classes, InternalNode() and
LeafNode() that inherit from a base Node() class. Additionally, whenever we speak of some
hyperplane h, we speak of it as the normal equation h(x) = n · x − d for whatever vector n and
d define that plane.

It is important to note that the choice of h in Algorithm 1 will affect the performance of eval-
uation; h should be chosen so as to balance the resulting binary tree. As a heuristic, we choose h

15

Algorithm 1 Precompute box spline pieces
1: procedure PRECOMPUTEBOXSPLINE(Ξ)
2: /* Returns a tuple containing the polyhedron of the support of Ξ
3: as the first element and the root Node object as the second*/
4: Compute SΞ from Definition 3.1
5: Compute Pn−s from Definition 4.3
6: Calculate the polyhedron Q for supp(MΞ)
7: Compute knot-planes H s.t. if h ∈ H then h ∩ supp(MΞ)
8: return (Q,Recurse(H,Q))

9: procedure RECURSE(H, Q)
10: /* Returns a Node object */
11: Choose h ∈ H that splits Q
12: if no such h exists then
13: Then Q is a distinct region of the mesh, so use
14: Equation (43) to derive a polynomial piece PQ(x)
15: return LeafNode(Q,PQ(x))

16: Split Q with h into left and right regions A,B
17: /* Here, left means all points x that satisfy h(x) ≤ 0, right is the opposite */
18: node← InternalNode()
19: node.h← h
20: node.left← Recurse(H\{h}, A)
21: node.right← Recurse(H\{h}, B)
22: return node

Algorithm 2 Evaluate box spline
1: procedure EVALBOXSPLINE(x, Q, root)
2: if x /∈ Q then
3: return 0
4: return RecurseEval(x, root)
5: procedure RECURSEEVAL(x, node)
6: if node is a LeafNode then
7: return evaluate node’s polynomial at x
8: h← node.h
9: L← node.left

10: R← node.right
11: if h(x) ≤ 0 then
12: return Recurse(x, L)

13: return Recurse(x, R)

16

so that it splits the given polyhedron into polyhedra of roughly equivalent hyper-volumes. To do
this, we iterate over each h ∈ H . At each iteration we sum the volumes of the regions on the left
of h, and sum the volumes of the regions on the right. We choose h that minimizes the difference
between these two sums. On average, the traversal time is O(log(k)) where k is the total num-
ber of regions of the box spline. A variant on this algorithm is implemented in a SageMath [10]
worksheet and is available as supplementary material.

7. Examples

Here we enumerate some examples of box splines. When feasible, we enumerate their polyno-
mial regions, and P and S sets. When we enumerate the sets for these box splines, we enumerate
simplified versions of the sets, combining elements that correspond to like terms in the final sum-
mation.

Example 7.1. Courant Element: The first example we consider is the well known Courant element
which is constructed by taking the the two Cartesian principle lattice directions and adding the
diagonal vector. This is given by the direction matrix

0.5 1 1.5 2

0.5

1

1.5

2

R0

R1

R2

R3

R4

R5

Figure 2: On the left is a plot of the Courant element, on the right is a plot of the different polynomial regions of the
box spline.

Enumerating the sets for this direction matrix yields

SΞ = {(1, (1, 2)) , (−1, (0, 1)) , (1, (0, 0)) , (1, (2, 1)) , (−1, (2, 2)) , (−1, (1, 0))} ,
P1 = {(1, (2, 1, 0)) , (−1, (2, 0, 1))} .

Example 7.2. Zwart-Powell Element: The Zwart-Powell element is similar to the Courant element
but has an additional vector added along a complementary diagonal. We provide a more thorough
example for the construction of P2 for the ZP element. We first start by noting the ZP element’s
direction matrix and a basis for its null-space

17

Ξ =

[
1 0 1 −1

0 1 1 1

]
, ker Ξ =


1 0

1 2

−1 −1

0 −1

 . (44)

We first construct P1 by definition (4.3). Consider (c,α) = (1, (1, 1, 1, 1)) ∈ P0. Since this is the
base case in definition (4.1), for this α we have

να = (1, 1,−1, 0), and mα = 1.

Definition (4.3) also dictates that this produces elements for all j with mα < j ≤ n such that
να(j) 6= 0. For j = 2 and j = 3 we have the tuples(

−1
1

1
, (2, 0, 1, 1)

)
and

(
−1
−1

1
, (2, 1, 0, 1)

)
respectively. Thus we have P1 = {(−1, (2, 0, 1, 1)), (1, (2, 1, 0, 1)}, and we apply the recursion to
each tuple of this multiset to construct P2. For (c,α) = (−1, (2, 0, 1, 1)) ∈ P1 we construct

Cα =
[
1 2

]
which has kerCα =

[
2

−1

]
.

Thus tα = (2,−1), and we have

να = ker Ξ · tα = (2, 0,−1, 1), and mα = 1,

which produces the elements(
−(−1)

−1

2
, (3, 0, 0, 1)

)
and

(
−1
−1

2
, (3, 0, 1, 0)

)
for j = 3 and j = 4 respectively. Finally, we look at the case (c,α) = (1, (2, 1, 0, 1)) ∈ P1. Again,
we construct

Cα =
[
−1 −1

]
which has kerCα =

[
1

−1

]
.

Which gives tα = (1,−1), and we have

να = ker Ξ · tα = (1,−1, 0, 1), and mα = 1,

producing the tuples (
−1
−1

1
, (3, 0, 0, 1)

)
and

(
−1

1

1
, (3, 1, 0, 0)

)
.

So we have

18

-1 1 2

3

R0

R1 R2

R3

R4

R5 R6

R7

R8

R9

R10

R11 R12

R13

R14

R15 R16

R17

R18

R19

R20

R21 R22

R23

R24

R25 R26

R27

Figure 3: On the left is a plot of the ZP-element, on the right is a plot of the different polynomial regions of the box
spline.

P2 = {(−1/2, (3, 0, 0, 1)) , (1/2, (3, 0, 1, 0)) , (1, (3, 0, 0, 1)) , (−1, (3, 1, 0, 0))}

or, equivalently (by collecting like terms)

P2 = {(1/2, (3, 0, 0, 1)) , (1/2, (3, 0, 1, 0)) , (−1, (3, 1, 0, 0))} .

Applying the recursion in definition (3.1) also yields the set

SΞ = {(−1, (−1/2, 3/2)) , (1, (−1/2,−3/2)) , (1, (−3/2, 1/2)) , (1, (1/2, 3/2)) ,

(−1, (1/2,−3/2)) , (−1, (−3/2,−1/2)) , (1, (3/2,−1/2)) , (−1, (3/2, 1/2))}

19

Using all of this applied to Equation (37) yields

MΞ(x) =

[[[
1 0

0 1

]−1

x− (−3/2,−1/2)

]](3,1)

+

− 1

2

[[[
1 1

0 1

]−1

x− (−3/2,−1/2)

]](3,1)

+

− 1

2

[[[
1 −1

0 1

]−1

x− (−3/2,−1/2)

]](3,1)

+

− 1

[[[
1 0

0 1

]−1

x− (1/2, 3/2)

]](3,1)

+

+
1

2

[[[
1 1

0 1

]−1

x− (1/2, 3/2)

]](3,1)

+

+
1

2

[[[
1 −1

0 1

]−1

x− (1/2, 3/2)

]](3,1)

+

− 1

[[[
1 0

0 1

]−1

x− (−3/2, 1/2)

]](3,1)

+

+
1

2

[[[
1 1

0 1

]−1

x− (−3/2, 1/2)

]](3,1)

+

+
1

2

[[[
1 −1

0 1

]−1

x− (−3/2, 1/2)

]](3,1)

+

− 1

[[[
1 0

0 1

]−1

x− (3/2,−1/2)

]](3,1)

+

+
1

2

[[[
1 1

0 1

]−1

x− (3/2,−1/2)

]](3,1)

+

+
1

2

[[[
1 −1

0 1

]−1

x− (3/2,−1/2)

]](3,1)

+

− 1

[[[
1 0

0 1

]−1

x− (−1/2,−3/2)

]](3,1)

+

+
1

2

[[[
1 1

0 1

]−1

x− (−1/2,−3/2)

]](3,1)

+

+
1

2

[[[
1 −1

0 1

]−1

x− (−1/2,−3/2)

]](3,1)

+

+

[[[
1 0

0 1

]−1

x− (3/2, 1/2)

]](3,1)

+

− 1

2

[[[
1 1

0 1

]−1

x− (3/2, 1/2)

]](3,1)

+

− 1

2

[[[
1 −1

0 1

]−1

x− (3/2, 1/2)

]](3,1)

+

+ 1

[[[
1 0

0 1

]−1

x− (1/2,−3/2)

]](3,1)

+

− 1

2

[[[
1 1

0 1

]−1

x− (1/2,−3/2)

]](3,1)

+

− 1

2

[[[
1 −1

0 1

]−1

x− (1/2,−3/2)

]](3,1)

+

+

[[[
1 0

0 1

]−1

x− (−1/2, 3/2)

]](3,1)

+

− 1

2

[[[
1 1

0 1

]−1

x− (−1/2, 3/2)

]](3,1)

+

− 1

2

[[[
1 −1

0 1

]−1

x− (−1/2, 3/2)

]](3,1)

+

.

Example 7.3. Skewed Element: As an example of a box spline that has not appeared in the litera-
ture, we introduce the four direction skewed element, defined by the matrix

Ξ =

[
1 0 1 2

0 1 1 1

]
. (45)

20

1 2 3 4

1

2

3

4

R0

R1 R2

R3

R4

R5 R6

R7

R8

R9

R10

R11 R12

R13

R14

R15 R16

R17

R18

R19

R20

R21 R22

R23

R24

R25 R26

R27

Figure 4: On the left is a plot of the Skewed element, on the right is a plot of the different polynomial regions of the
box spline.

SΞ = {(1, (2, 3/2)) , (−1, (2, 1/2)) , (−1, (−2,−1/2)) , (1, (−2,−3/2)) ,

(1, (−1, 1/2)) , (1, (1,−1/2)) , (−1, (1, 3/2)) , (−1, (−1,−3/2))}
P2 = {(1/2, (3, 0, 0, 1)) , (−1, (3, 0, 1, 0)) , (−1/2, (3, 1, 0, 0))}

Example 7.4. FCC Cubic Spline: Finally, as an example of a higher dimensional box spline, we
enumerate the sets for the FCC Cubic Spline of Kim et al [4].

Ξ =

0 1 0 −1 1 0

0 −1 1 0 0 1

1 0 0 1 0 −1

 (46)

SΞ = {(1, (−1/2, 3/2,−3/2)) , (−1, (1/2,−3/2,−1/2)) , (−1, (3/2,−3/2, 1/2)) ,

(−1, (−1/2, 3/2, 1/2)) , (−1, (−3/2, 1/2, 3/2)) , (−1, (−3/2, 3/2,−1/2)) ,

(−1, (−1/2, 1/2,−3/2)) , (1, (3/2,−1/2, 1/2)) , (1, (−3/2,−1/2, 3/2)) ,

(−1, (1/2, 3/2,−3/2)) , (−1, (3/2,−1/2,−3/2)) , (−1, (1/2,−1/2, 3/2)) ,

(1, (1/2,−1/2,−3/2)) , (1, (−1/2, 1/2, 3/2)) , (1, (1/2,−3/2, 3/2)) ,

(−1, (−3/2,−1/2, 1/2)) , (1, (1/2, 3/2,−1/2)) , (−1, (−1/2,−3/2, 3/2)) ,

(1, (−3/2, 1/2,−1/2)) , (1, (−3/2, 3/2, 1/2)) , (1, (−1/2,−3/2, 1/2)) ,

(1, (3/2, 1/2,−3/2)) , (1, (3/2,−3/2,−1/2)) , (−1, (3/2, 1/2,−1/2))}
P3 = {(−1, (4, 1, 1, 0, 0, 0)) , (−1, (4, 1, 0, 0, 1, 0)) , (−1, (4, 0, 1, 1, 0, 0)) ,

(−1, (3, 2, 1, 0, 0, 0)) , (1, (3, 2, 0, 0, 1, 0)) , (−1, (4, 0, 0, 0, 1, 1)) ,

(1, (4, 1, 0, 0, 0, 1)) , (−1, (4, 1, 0, 1, 0, 0)) , (−1, (3, 2, 0, 0, 0, 1)) ,

(−1, (3, 2, 0, 1, 0, 0))}.

As this box spline has many regions, we omit the enumeration of polynomial pieces. The following
figure shows the numerical stability of this form by plotting several iso-contours of this box spline.

21

Figure 5: Iso-surfaces for the level-sets 1/4, 1/16, 1/256, pictured in green, pink and yellow respectively.

8. Conclusion

In this work, we provided an explicit decomposition scheme for the piecewise polynomial form
of any non-degenerate box spline and provided bounds on the complexity of this procedure. While
there do exist other evaluation schemes for evaluating box splines, they all typically depend on
recursively evaluating a box spline, or they are ad-hoc in their construction procedure. Our method
is general and works for all non-degenerate box-splines with real valued direction matrices. How-
ever, we only provide a characterization of the splines themselves, when used in an approximation
space, it is possible to derive more efficient evaluation schemes for the semi-discreet convolution
sum between a box-spline and lattice data. This is an avenue for future work.

We also provide, as a SageMath [10] worksheet, the code to derive the piecewise polynomial
form of any box-spline, as well as the code to generate BSP trees that represent the evaluation
schemes, and code to generate C++ code from those BSPs.

Acknowledgements

We would like to thank the reviewers for their helpful comments, suggestions and corrections.
We would also like to thank NSERC for providing funding for this work.

[1] de Boor, C.: On the evaluation of box splines. Numerical Algorithms 5(1), 5–23 (1993).
DOI 10.1007/BF02109280

22

[2] de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag New York, Inc.,
New York, NY, USA (1993). DOI 10.1007/978-1-4757-2244-4

[3] Entezari, A., Van De Ville, D., Moller, T.: Practical box splines for reconstruction on the
Body Centered Cubic lattice. Visualization and Computer Graphics, IEEE Transactions on
14(2), 313–328 (2008). DOI 10.1109/TVCG.2007.70429

[4] Kim, M., Entezari, A., Peters, J.: Box spline reconstruction on the Face-Centered Cubic lat-
tice. Visualization and Computer Graphics, IEEE Transactions on 14(6), 1523–1530 (2008)

[5] Kim, M., Peters, J.: Fast and stable evaluation of box-splines via the BB-form. Numerical
Algorithms 50(4), 381–399 (2009). DOI 10.1007/s11075-008-9231-6

[6] Kim, M., Peters, J.: Symmetric box-splines on the A*N lattice. Journal of Approximation
Theory 162(9), 1607–1630 (2010). DOI 10.1016/j.jat.2010.04.007

[7] Kobbelt, L.: Stable evaluation of box splines. Numerical Algorithms 14(4), 377–382 (1997).
DOI 10.1023/A:1019133501773

[8] Peña, J.M.: On the multivariate Horner scheme. SIAM Journal on Numerical Analysis 37(4),
1186–1197 (2000)

[9] Peña, J.M., Sauer, T.: On the multivariate Horner scheme II: Running error analysis. Com-
puting 65(4), 313–322 (2000)

[10] William, A.S., et al.: Sage Mathematics Software (Version 8.0.0) (2017).
http://www.sagemath.org

23

Region Polynomial Piece

R0 x− y + 1

R1 −y + 2

R2 −x+ 2

R3 x

R4 y

R5 −x+ y + 1

Table 3: Polynomial regions of the Courant element.

Region Polynomial Piece

R0, R1
1
4
x2 − 1

2
xy + 1

4
y2 + 3

2
x− 3

2
y + 9

4

R2 −1
4
x2 − 1

2
xy + 1

4
y2 + 3

2
x− 3

2
y + 9

4

R3
1
2
y2 − 3 y + 9

2

R4 −1
2
x2 + 1

2
x− 1

2
y + 5

4

R5 −1
4
x2 + 1

2
xy + 1

4
y2 − x− 2 y + 7

2

R6, R7
1
4
x2 + 1

2
xy + 1

4
y2 − 2x− 2 y + 4

R8
1
2
x2 + x+ 1

2

R9
1
4
x2 − 1

2
xy − 1

4
y2 + 3

2
x+ 1

2
y + 1

4

R10
1
4
x2 + 1

2
xy − 1

4
y2 + y − 1

2

R11 −1
2
y2 + 1

2
x+ 3

2
y − 3

4

R12, R13, R14, R15 −1
2
x2 − 1

2
y2 + 1

2
x+ 3

2
y − 3

4

R16 −1
2
y2 − 1

2
x+ 3

2
y − 1

4

R17
1
4
x2 + 1

2
xy − 1

4
y2 − 2x+ 2

R18
1
4
x2 − 1

2
xy − 1

4
y2 − 1

2
x+ 3

2
y − 1

4

R19
1
2
x2 − 2x+ 2

R20, R21
1
4
x2 + 1

2
xy + 1

4
y2

R22 −1
4
x2 + 1

2
xy + 1

4
y2

R23 −1
2
x2 + 1

2
x+ 1

2
y − 1

4

R24
1
2
y2

R25 −1
4
x2 − 1

2
xy + 1

4
y2 + 1

2
x+ 1

2
y − 1

4

R26, R27
1
4
x2 − 1

2
xy + 1

4
y2 − 1

2
x+ 1

2
y + 1

4

Table 4: Polynomial regions of the ZP-element.

24

Region Polynomial Piece

R0
1
2
x2 − xy + 1

2
y2 + 2x− 2 y + 2

R1 −1
2
x2 + 1

4
y2 + 2x− 2 y + 2

R2, R3
1
4
y2 − 2 y + 4

R4 −1
2
x2 + xy − 1

4
y2 − x− y + 7

2

R5
1
2
x2 − 3x+ 9

2

R6 x2 − xy + 1
4
y2 + x− 1

2
y + 1

4

R7
1
2
x2 − xy + 1

4
y2 + 2x− 1

2
y − 1

4

R8 −1
2
x2 + 2x− 1

2
y − 1

4

R9, R10 −x2 + xy − 1
2
y2 + x+ 1

2
y − 3

4

R11 −1
2
x2 + xy − 1

2
y2 − x+ 1

2
y + 5

4

R12
1
2
x2 − 1

4
y2 − 3x+ 3

2
y + 9

4

R13 x2 − xy + 1
4
y2 − 3x+ 3

2
y + 9

4

R14 x2 − xy + 1
4
y2 + x− 1

2
y + 1

4

R15
1
2
x2 − 1

4
y2 + 1

2
y − 1

4

R16 −1
2
x2 + xy − 1

2
y2 + 1

2
y − 1

4

R17, R18 −x2 + xy − 1
2
y2 + x+ 1

2
y − 3

4

R19 −1
2
x2 + x+ 1

2
y − 3

4

R20
1
2
x2 − xy + 1

4
y2 − x+ 3

2
y + 1

4

R21 x2 − xy + 1
4
y2 − 3x+ 3

2
y + 9

4

R22
1
2
x2

R23 −1
2
x2 + xy − 1

4
y2

R24, R25
1
4
y2

R26 −1
2
x2 + 1

4
y2 + x− 1

2

R27
1
2
x2 − xy + 1

2
y2 − x+ y + 1

2

Table 5: Polynomial regions of the Skewed element.

25

	Introduction
	Background
	Difference Operator
	Green's Function
	Evaluation at a Point
	Fast Evaluation
	Examples
	Conclusion

