

illustrares

Interactive Modeling, Visualization & Analytics R&D Group

Decal-Lenses: Interactive Lenses on Surfaces for Multivariate Visualization

Allan Rocha, Julio Daniel Silva, Usman Alim, Sheelagh Carpendale, and Mario Costa Sousa

UNIVERSITY OF CALGARY

VISAGG

Visualization and Graphics Group

- Multivariate Surface Data
 - Common in several domains: Medicine, Geology, Engineering
 - Experts require to interpret and correlate multiple attributes
- Problem of *how to* visualize multivariate data

gineering i<mark>butes</mark>

• Multivariate Layered (Superimposed) Visualization on Surfaces

[Carnecky et al., 2012]

[Meuschke et al., 2018]

Clutter problem

Introduction

Multivariate Layered (Superimposed) Visualization on Surfaces

[Carnecky et al., 2012]

[Meuschke et al., 2018]

How to augment and manage multivariate visualizations on surfaces?

Interaction Techniques

Interactive Lenses in Visualization

[Tominski et al., 2014, 2017]

Lenses applied to surface/3D data

Interactive Lenses in Visualization

[Tominski et al., 2014, 2017]

[Gasteiger et al., 2011]

Interactive Lenses in Visualization

[Gasteiger et al., 2011]

Interactive Lenses in Visualization

[Gasteiger et al., 2011]

[Krüger *et al.,* 2013]

- Lenses Dimensionality
 - 2D defined in image space
 - 2.5 2D objects placed in object space
 - 3D volumetric shapes placed in object space

- Lenses Dimensionality Limitations
 - 2D defined in image space
 - Lack correlation between the 2D screen position and 3D dataset
 - 2.5 2D objects placed in object space
 - 3D volumetric shapes placed in object space

- Lenses Dimensionality Limitations
 - 2D defined in image space
 - Lack correlation between the 2D screen position and 3D dataset
 - 2.5 2D objects placed in object space
 - 3D volumetric shapes placed in object space
 - Require a high interaction effort
 - proper placement and
 - alignment within the 3D object
 - Do not allow for compositing operations

velocity magnitude

pressure

- Example: Aneurysm Data
 - 2.5D Lenses displaying pressure

(a)

Our approach

Design Goals

- **DG1** Consider spatial correlation
- **DG2** Facilitate placement
- **DG3** Support scalability
- **DG4** Provide fluid interaction
- **DG5** Consider depth disambiguation cues

Patches of 2D manifolds built to attach smoothly to non-flat surfaces.

- Resemble 2D decals drawn over a surface
- Fundamentally different
 - Decals textures stamped onto surfaces
 - Decal-Lenses F+C interaction technique

Patches of 2D manifolds built to attach smoothly to non-flat surfaces.

Construction

$$P_c := B_c \cap M$$

May not be a disk

Patches of 2D manifolds built to attach smoothly to non-flat surfaces.

Construction

 $P_c := B_c \cap M \qquad p = (\rho_c(p), \theta_c(p))$

- May not be a disk
- Local parametrization
 - Blending
 - Composition

Demonstration Example

- Aneurysm Data
 - Decal-Lenses displaying pressure

Lens comparison: 2.5D Lens vs Decal-Lens

velocity magnitude pressure

Patches of 2D manifolds built to attach smoothly to non-flat surfaces.

Construction

 $P_c := B_c \cap M \qquad p = (\rho_c(p), \theta_c(p))$

- May not be a disk
- Local parametrization
 - Blending
 - Composition

Patches of 2D manifolds built to attach smoothly to non-flat surfaces.

Construction

 $P_c := B_c \cap M \qquad p = (\rho_c(p), \theta_c(p))$

- May not be a disk
- Local parametrization
 - Blending
 - Composition
- Widgets: Wheel

Decal-Lenses

- Earth Data
- Sphere
 - $p = (\rho_c(p), \theta_c(p))$
 - computed exactly
- Attributes

Operations over Multiple Decal-Lenses

Operation Over Multiple Decal-Lenses

Lens-regions of arbitrary shapes

- Operations
 - Brushing
 - Lassoing
 - Other operations could be defined
- Decal-lenses are amenable to composition

Operation Over Multiple Decal-Lenses

Brushing

Operation Over Mu

• Brushing

Decal-Lens

Operation Over Multiple Decal-Lenses

Lassoing

Lens-region

Decal-Lenses

Lassoing

GPU Implementation

Decal-Lenses GPU Implementation

Decal-Lenses GPU Implementation

Extensions

Decal-Lenses on Complex Geometry

Brain data

Decal-Lenses on Complex Geometry Support Surface

Brain data

Support Surfaces

- Several ways to define such surfaces
- Related work
 - Outer envelopes [Cohen, et al. 2006]
 - Text scaffolds [Cipriano & Gleicher, 2008]
 - Bounding proxies [Calderon & Boubekeur, 2017]
- Our approach focuses on support surfaces for interaction

Support Surface Implementation

Refer to our paper for more details

Conclusions

Remarks

Survey on Interactive Lenses [Tominski et al. 2016]

- Emphasize the need to develop lens techniques
 - Simple placement, interaction, and parametrization
 - Flexibility of combining lenses
 - Reuse of lenses for other datasets in other domains
- Decal-Lenses address the aforementioned requirements

Contributions

- Decal-Lenses, a new category of lenses for multivariate visualization
- Possibility to create lens-regions by operating over multiple lenses
- Simple GPU implementation
- Concept of support surfaces for designing interaction techniques

VIS 2018 illustrares Interactive Modeling, Visualization THANK YOU!

Decal-Lenses: Interactive Lenses on Surfaces for Multivariate Visualization

Allan Rocha, Julio Daniel Silva, Usman Alim, Sheelagh Carpendale, and Mario Costa Sousa

UNIVERSITY OF CALGARY

Group

SAGG

ualization and Graphics Group

contact: acarocha@ucalgary.ca

VIS 2018 illustrares Interactive Modeling, Visualization THANK YOU!

Decal-Lenses: Interactive Lenses on Surfaces for Multivariate Visualization

Allan Rocha, Julio Daniel Silva, Usman Alim, Sheelagh Carpendale, and Mario Costa Sousa

UNIVERSITY OF CALGARY

Group

SAGG

ualization and Graphics Group

contact: acarocha@ucalgary.ca

Performance

- Real-time
 - Test up to 5000 lenses
- Limitations
 - Multiple rendering calls (one for each decal-lens)

Decal-Lenses

- Local Cameras
 - Visualize multiple points of view
 - Facilitate data comparison/correlation

Evaluation

• Qualitative

