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Abstract

The body-centered cubic (BCC) lattice is the optimal three-dimensional sampling lattice.

Its optimality stems from the fact that its dual, the face-centered cubic (FCC) lattice,

achieves the highest sphere-packing efficiency. In order to approximate a scalar-valued

function from samples that reside on a BCC lattice, spline-like compact kernels have been

recently proposed. The lattice translates of an admissible BCC kernel form a shift-invariant

approximation space that yields higher quality approximations as compared to similar spline-

like spaces associated with the ubiquitous Cartesian cubic (CC) lattice.

In this work, we focus on the approximation of derived quantities from the scalar BCC

point samples and investigate two problems: the accurate estimation of the gradient and the

approximate solution to Poisson’s equation within a rectangular domain with homogeneous

Dirichlet boundary conditions. In either case, we seek an approximation in a prescribed shift-

invariant space and obtain the necessary coefficients via a discrete convolution operation.

Our solution methodology is optimal in an asymptotic sense in that the resulting coefficient

sequence respects the asymptotic approximation order provided by the space.

In order to implement the discrete convolution operation on the BCC lattice, we de-

velop efficient three-dimensional versions of the discrete Fourier and sine transforms. These

transforms take advantage of the Cartesian coset structure of the BCC lattice in the spatial

domain and the geometric properties of the Voronoi tessellation formed by the dual FCC

lattice in the Fourier domain.

We validate our solution methodologies by conducting qualitative and quantitative ex-

periments on the CC and BCC lattices using both synthetic and real-world datasets. In the

context of volume visualization, our results show that, owing to the superior reconstruction

of normals, the BCC lattice leads to a better rendition of surface details. Furthermore, like

the approximation of the function itself, this gain in quality comes at no additional cost.
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Endow your will with such power that at every turn of fate,

God Himself asks of His slave, ‘What is it that pleases thee?’

— Allama Muhammad Iqbal
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Preface

We live in a three-dimensional world; many continuous phenomena that we care about

naturally have a trivariate description. Of the many possible representations of these phe-

nomena, grid-based representations are specially attractive since they simplify the tasks that

practitioners and researchers encounter in the different stages of data flow. Across various

scientific disciplines, the term ‘grid-based’ is usually synonymous with the three-dimensional

Cartesian cubic (CC) lattice. The reason for the popularity of this lattice is the fact that it

allows one to apply univariate models to the three dimensions separately. Not surprisingly,

acquisition devices are fine-tuned to capture data on the CC lattice, and the subsequent

processing and analysis tasks are optimized to work with CC data to gain insight into the

underlying continuous phenomena of interest. Some examples of disciplines where the CC

lattice is widely used include medical imaging (tomography, ultrasound, magnetic resonance

imaging), scientific computing (numerical solution of partial differential equations (PDEs)),

computer graphics (fluid effects, textures on graphics processing units (GPUs)) and visual-

ization (iso-surface extraction, volume rendering, flow visualization, uncertainty visualiza-

tion).

Nature is abound with examples of non-Cartesian lattice patterns. The arrangement

of cells in a honeycomb, the minimum energy configurations of crystalline structures, and

the efficient grocer’s packing of oranges are all familiar examples that attempt to increase

the isotropy of the arrangement so as to minimize the occurrence of deep holes. The

body-centered cubic (BCC) and face-centered cubic (FCC) lattices are of special interest

from a sampling theoretic point of view since these lattices — as we shall explore in more

detail in Chapter 1 — provide higher fidelity data representations as compared to the CC

lattice. Despite this benefit, these non-Cartesian lattices are rarely used in practice. The
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problem really is two-fold. On the one hand, there is little to no data that is directly ac-

quired on these lattices. On the other hand, there is a dearth of tools that can efficiently

process non-Cartesian data. This thesis attempts to address the latter issue.

The problem of acquiring data on the BCC lattice is, quite arguably, an important re-

search question in its own right. Indeed, our initial foray into the the world of non-Cartesian

computing attempted to extend some well-established acquisition algorithms to the BCC

lattice. In particular, we extended the mesoscopic Lattice Boltzmann method for simu-

lating incompressible flows [AEM09] and adapted the iterative expectation-maximization

algorithm for computed tomography (CT) to the BCC lattice [FAVM09]. In either case, the

BCC lattice outperforms its Cartesian counterpart. Fluid simulations carried out on the

BCC lattice are more stable and exhibit less numerical dissipation. Likewise, tomographic

reconstruction of synthetic data on the BCC lattice leads to lower root mean square (RMS)

errors. There are still many open questions and challenges. However, addressing them is

deferred to future research.

Scope and Organization

As the title suggests, this thesis deals with the efficient processing of data that is assumed

to have been acquired on the BCC lattice. For validation purposes, we shall work with

BCC datasets that are either synthetically generated or have been adequately subsampled

from some high resolution CC version so as to ensure that the resulting data satisfies the

assumptions that underly a processing model. In particular, we shall be dealing with clean

data that is either inherently noise-free or has been adequately post-processed to remove

noise. Making our processing pipeline robust in the presence of noise is a subject of future

research.

While the problem of reconstructing a continuous function from its scalar BCC samples

has sparked quite a bit of research activity, the approximation of derived quantities has

received little attention. Thus, bridging this gap is the major theme of this thesis. Our main

focus is to seek efficient ways to approximate the gradient of a trivariate scalar function from

its point samples (Chapter 2 and Chapter 3). This problem frequently arises in volume

visualization where, the gradient provides informative shading cues. Our results clearly

demonstrate that a proper treatment of this problem can reveal visual details that may be

lost due to a näıve gradient approximation strategy.
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We also delve into the problem of solving Poisson’s equation within a rectangular domain

with homogeneous Dirichlet boundary conditions (Chapter 4). Here, the point samples

represent the right hand side of the Poisson equation (see (4.2) on page 66) and the goal is

to accurately recover a continuous approximation of the left hand side.

For both of these approximation/reconstruction tasks, the common theme is the idea

of approximating a smooth derived function in prescribed shift-invariant spaces. These are

spaces spanned by a basis obtained via the lattice translates of a generating function. The

generating function may or may not be compactly supported. However, most problems

of practical interest demand that the generator be compactly supported in order to make

the reconstruction tractable. Toward this end, compact spline-like kernels are noteworthy

since they are built by piecing together polynomials that can be readily evaluated. We

review these concepts in more detail in the introductory chapter (Chapter 1) where, we

also establish the mathematical notations and conventions that are used throughout the

remainder of the thesis.

Working with shift-invariant spaces has the advantage that the required coefficients

(weights) that go with the basis functions can be obtained by convolving the point samples

with a discrete filter. On the CC lattice, discrete convolutions are frequently implemented

in the Fourier domain via the fast Fourier transform (FFT): a versatile and indispensable

processing tool that has been highly optimized. It turns out that the FFT can also be used

to efficiently implement discrete convolution operations on the BCC lattice. This topic, as

well as the efficient evaluation of the discrete sine transform (DST) on BCC, are discussed

in more detail in Chapter 5. Lastly, Chapter 6 discusses related avenues of future research.

Chapter 1 forms the backbone of this thesis and all other chapters depend on it. On the

other hand, the topic of gradient estimation (Chapter 2 and Chapter 3), approximating the

solution to Poisson’s equation (Chapter 4), and discrete trigonometric transforms on BCC

(Chapter 5), are presented such that they can be read independently of each other. There

is some overlap which is duly pointed out where necessary.
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Notations

Rs is the s-dimensional Euclidean space. 1

Z is the set of integers. 2

Zs is the Cartesian power of the set of integers, Zs := Z× Z× · · · × Z︸ ︷︷ ︸
s

. 2

f̂(ω) denotes the Fourier transform of the function f(x). 2

↔ indicates continuous or discrete-time Fourier transform pairs. 8

L denotes a lattice generated by the matrix L. 2

L◦ denotes the lattice that is dual to L and is generated by the matrix

L−T.

3

L2(R
s) is the space of square integrable functions in Rs. 4

g⋆(x) is the complex conjugate of g(x). 4

‖f‖ denotes the L2-norm of the function f . 4

‖c‖l2(Zs) denotes the l2-norm of the sequence c. 5
〈
f, g
〉

is the L2-inner product between f and g. 4

O(xk) Big O notation for asymptotics. f(x) = O(xk) if and only if

lim supx→0

∣∣f(x)
xk

∣∣ <∞.

5

V(Lh, ϕ) is the approximation space spanned by the lattice shifts of the

kernel ϕ scaled by h.

4

Dα denotes the operator that gives the partial derivative of order
∣∣α
∣∣,

where α is a multi-index.

5

W k
2 (R

s) denotes the Sobolev space formed by those functions in L2(R
s)

whose weak derivates upto order k are also in L2(R
s).

5

Πk(R
s) is the vector space of all multivariate polynomials in Rs of degree at

most k.

5
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(
f ∗ g

)
(x) is the continuous convolution of the functions f and g. It is defined

as
(
f ∗ g

)
(x) :=

∫
Rs
f(y)g(x− y)dy.

8

(
f ∗ g

)
[n] is the discrete convolution of the sequences f and g. It is defined as

(
f ∗ g

)
[n] :=

∑
l∈Zs f [l]g[n− l].

12

ϕ(x) is the flipped version of ϕ, ϕ(x) := ϕ(−x). 8

aϕ[n] is the autocorrelation sequence of the kernel ϕ with respect to a

lattice L.
8

δn−l is Kronecker’s delta function. δn−l = 1 if n = l and 0 otherwise. 9

ϕ̊ is the biorthogonal dual of the kernel ϕ. ˆ̊ϕ(ω) = ϕ̂(ω)

Âϕ(ω)
. 9

(
PV(Lh,ϕ)f

)
denotes the orthogonal projection of f onto the space V(Lh, ϕ). 9

1P(x) is the indicator function of the set P, i.e. 1P(x) = 1 when x ∈ P
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Chapter 1

Background

The numerical approximation of continuous real-world phenomena is a fundamental task

that is at the heart of many scientific disciplines. Given a function f(x) (x ∈ Rs) that

models some real-world phenomenon, we often wish to find an approximation fapp(x) that,

in some quantifiable way, can be brought arbitrarily close to f so that it gives us a faithful

representation of the underlying continuous phenomenon. Typical examples include speech

or audio signals (s = 1), a photograph or image (s = 2), or medical scans such as magnetic

resonance imaging or computed tomography (s = 3). In this chapter, we are concerned with

approximations that are obtained from a set of discrete measurements of f so that they can

be efficiently manipulated and processed by a digital computer. We are specially interested

in discrete measurements that lie on a point lattice. This not only facilitates mathematical

analysis but also expedites many acquisition and processing tasks. Of notable importance

to us is the three-dimensional case (s = 3) where, we shall argue that the BCC lattice is

a much better alternative to the ubiquitous CC lattice for the representation of 3D scalar

functions.

1.1 Approximation in Shift Invariant Spaces

We first look at the approximation problem in the context of bandlimited functions and

later explore a more general Hilbert-space formulation that encapsulates the bandlimited

function model.

1
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1.1.1 Reconstruction of Bandlimited Functions

One of the seminal results is attributed to Shannon, Nyquist and Whittaker, commonly

referred to as the Nyquist-Shannon sampling theorem [Sha49]. In 1D, this theorem tells us

that exact recovery of f is possible as long as f is bandlimited and is point sampled at a

rate strictly greater than twice the Nyquist rate. Recall that the Fourier transform f̂(ω)

(ω ∈ Rs) of an s-dimensional function f is defined as

f̂(ω) :=

∫

Rs
f(x) exp(−2πıωTx)dx. (1.1)

When s = 1, a spectrum f̂(ω) is bandlimited if it is completely supported inside the interval

[−ω0, ω0]. If this is the case, then f can be completely recovered from regularly spaced

samples f(hk) (k ∈ Z) according to the interpolation formula

f(x) =
∑

k∈Z
f(hk) sinc(

x

h
− k), (1.2)

provided that the sampling rate h < 1
2ω0

. We shall not give a proof of Shannon’s theorem

here. However, we would like to mention that a key ingredient is Poisson’s summation

formula which tells us that sampling in the spatial domain is tantamount to a periodization

of the spectrum in the Fourier domain [Pin02]. The higher the sampling rate, the further

apart the Fourier spectrum replica will be. Thus, at the Nyquist rate, the replica have no

overlap (no aliasing) which makes exact recovery possible. The Fourier transform of the

interpolator sinc(x) := sin(πx)
πx is a rectangular pulse that is unity when ω ∈ (−1

2 ,
1
2) and zero

otherwise. Thus, the recovery formula (1.2) can be seen as carving out the spectrum f̂(ω)

by suppressing all the replica.

Shannon’s sampling theorem can be extended to higher dimensions via a simple tensor

product provided that the relevant function of interest f(x) has a spectrum f̂(ω) that is

completely supported inside a rectangular region in the Fourier domain. This is equivalent

to using the s-dimensional integer lattice Zs as the sampling pattern in the spatial domain.

A more general version of the theorem that handles non-rectangular sampling lattices was

first proposed by Miyakawa [Miy59] (in Japanese) and later brought to the attention of the

Anglosphere by Peterson and Middleton [PM62]. Recall that a sampling lattice L is a set

of points in Rs that forms a group under addition. It is generated by a matrix L and is

defined as

L := {Ln : n ∈ Z
s}. (1.3)
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The matrix L is usually an s×s non-singular matrix and is not unique. Sampling a function

f on L amounts to a periodization of f̂ on the dual lattice L◦ that is generated by L−T. A

multi-dimensional version of the Poisson summation formula [DM84, Sec. 1.4.2] makes this

operation precise.

∑

n∈Zs
f(Ln) exp(−2πıωTLn) =

1∣∣det(L)
∣∣
∑

m∈Zs
f̂(ω − L−Tm) (1.4)

This formula tells us that, if the spectrum f̂ is compactly supported and can be tightly

enclosed inside the Voronoi cell around ω = 0 of the dual lattice L◦, then f can be completely

recovered from its spatial lattice samples f(Ln). The multi-dimensional analog of the

interpolation formula (1.2) is

f(x) =
∑

n∈Zs
f(Ln) sincL(x− Ln), (1.5)

where sincL(x) is the interpolator whose Fourier transform is the indicator function of the

Voronoi cell of L◦ around ω = 0.

If the compact support of f̂ has a non-rectangular shape, then the most efficient sampling

lattice L is the one whose dual L◦ most tightly packs the spectrum replica of f̂ [PM62]. In

many practical applications, one typically assumes that there is no directional bias and the

spectrum f̂ is radially bandlimited, i.e. f̂(ω) = 0 whenever ω > ω0. For such a function,

the most efficient sampling lattice is therefore the dual of the densest hypersphere packing

lattice in Rs. Petersen and Middleton [PM62] provided the generating matrices for optimal

sampling lattices up to s = 7. In particular, for s = 2, the densest circle packing lattice is

the hexagonal lattice. Its dual, a rotated hexagonal lattice is therefore the optimal sampling

lattice. For s = 3, the densest sphere packing lattice is the FCC lattice and its dual, the

BCC lattice provides the most optimal sampling. A complete characterization of the known

hypersphere packing lattices is provided by Conway and Sloan [CS99]. For the more general

case of arbitrary polygonal shape Fourier spectra, Lu et al. have recently proposed a search

algorithm that can find the most efficient alias-free sampling lattices [LDL09].

1.1.2 Hilbert-space Formulation

Bandlimited recovery formulas such as (1.2) and (1.5) are rarely used in practice for a

number of reasons. Firstly, functions encountered in practice are seldom bandlimited and

therefore need to be appropriately filtered with an anti-aliasing prefilter in order to ensure
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that the interpolation operation recovers the closest bandlimited approximation. Secondly,

the painstakingly slow decay of the sinc function prohibits practical use. It is much more

desirable to use reconstruction kernels that are compactly supported so that an approxi-

mation can be readily computed. The ubiquity of linear interpolation is indisputable. It is

efficient and can easily provide better quality approximations simply by increasing the sam-

pling rate. It is therefore advantageous to adopt a more general Hilbert space formulation

that in principle behaves like the interpolation formula (1.5) but allows for the inclusion of

more compact kernels.

We assume that our function of interest f lies in L2(R
s), the space of square integrable

functions in Rs. We denote the L2-norm of f as

‖f‖ :=

(∫

Rs

∣∣f(x)
∣∣2dx

) 1
2

<∞. (1.6)

L2(R
s) is a Hilbert space with the associated inner product given by

〈
f, g
〉
:=

∫

Rs
f(x)g⋆(x)dx, (1.7)

where g⋆(x) is the complex conjugate of g(x). With this definition of the inner product, a

function f and its Fourier transform f̂ are isometric i.e., ‖f‖2 =
〈
f, f

〉
=
〈
f̂ , f̂

〉
= ‖f̂‖2.

We generalize the bandlimited formulation described earlier to shift-invariant spaces,

spaces that are spanned by the lattice shifts of a kernel ϕ(x). Unless otherwise stated, we

assume that L is normalized so that
∣∣det(L)

∣∣ = 1. In order to control the rate of sampling,

we employ an isotropic sampling parameter h to refine the lattice. We denote the resulting

scaled lattice as Lh := {hLn : n ∈ Zs}. A shift-invariant approximation space is then

defined as

V(Lh, ϕ) :=
{
g(x) =

∑

n∈Zs
c[n]ϕ(

x

h
− Ln) : c ∈ l2(Z

s)

}
. (1.8)

In order to ensure that any function g ∈ V(Lh, ϕ) has a unique representation in terms

of a finite energy coefficient sequence c[·], the set of functions {ϕh,n}n∈Zs where ϕh,n(x) :=

ϕ(xh − Ln), must be linearly independent and form a basis for V(Lh, ϕ). An important

concept is that of a Riesz basis, which is a basis that is not necessarily orthogonal but

exhibits properties that are similar to those found in orthogonal bases [Kre89]. Formally,

the lattice translates {ϕh,n}n∈Zs form a Riesz basis if there exist finite positive constants A

and B such that

∀ c[n] ∈ l2(Z
s), A‖c‖2l2(Zs) ≤ ‖

∑

n∈Zs
c[n]ϕh,n(x)‖2 ≤ B‖c‖2l2(Zs), (1.9)
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where ‖c‖l2(Zs) :=
(∑

n∈Zs
∣∣c[n]

∣∣2
)1
2
is the l2-norm of the coefficient sequence c. This is an

important requirement when seeking an approximation fapp ∈ V(Lh, ϕ). Besides ensuring

that V(Lh, ϕ) ⊂ L2(R
s), it guarantees that a biorthogonal basis of V(Lh, ϕ) exists so that

f can be orthogonally projected to V(Lh, ϕ). The basis is orthonormal when A = B = 1

and there is norm equivalence between the L2-norm of a function g ∈ V(Lh, ϕ) and the l2-

norm of its expansion coefficients. Indeed, the interpolator sincL introduced in the previous

section forms an orthonormal basis for the space of bandlimited functions, the sample values

serving as the expansion coefficients.

1.1.3 Approximation Order and Strang-Fix Conditions

The bandlimited model introduced earlier aims at perfectly recovering a bandlimited func-

tion from its sample values. The shift invariant model on the other hand relaxes this

requirement and provides a way to quantify how far off an approximation fapp is in terms

of the L2-distance ‖f − fapp‖. For an integer k, we say that the space V(Lh, ϕ) provides an
approximation order of k if for each sufficiently smooth function f , there exists a constant

C > 0 such that

‖f − fapp‖ ≤ Chk as h→ 0, or equivalently ‖f − fapp‖ = O(hk). (1.10)

The smoothness requirement on f is made precise by requiring that f belongs to the Sobolev

space W k
2 (R

s), the space of those functions in L2(R
s) whose weak partial derivatives up to

order k are also in L2(R
s). It is defined as

W k
2 (R

s) :=
{
u ∈ L2(R

s) : Dαu ∈ L2(R
s) ∀

∣∣α
∣∣ ≤ k

}
, (1.11)

where α = (α1, . . . , αs) is a multi-index,
∣∣α
∣∣ denotes its l1-norm, and Dαu := ∂

∣∣
α

∣∣
u

∂x
α1
1 ···∂xαss

is

a partial derivative of order
∣∣α
∣∣ in the weak sense. Equivalently, f ∈ W k

2 (R
s) if and only

if
∫
Rs

∣∣ωα1
1 · · ·ωαss f̂(ω)

∣∣2dω < ∞, ∀
∣∣α
∣∣ ≤ k. Thus, the Fourier transform f̂(ω) must decay

faster than any polynomial up to degree k, i.e. lim‖ω‖→∞
∣∣ωα1

1 · · ·ωαss f̂(ω)
∣∣ = 0, ∀

∣∣α
∣∣ ≤ k.

Note that when f is differentiable in the conventional sense, its weak derivative coincides

with the strong derivative Dαf .

There is an important connection between the approximation order k and Πk−1(R
s),

the vector space of all multivariate polynomials of degree at most k − 1. In the univariate

setting s = 1, this connection was first established by Schoenberg [Sch46] who is regarded
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as the father of splines. It was later formalized by Strang and Fix [SF71] in the context

of the univariate finite element method. It is now commonly referred to as the Strang-Fix

conditions.

Strang-Fix Conditions of Order k: In the multivariate setting of approximation in

V(Lh, ϕ), the following statements are equivalent.

ϕ̂(0) = 1, and Dαϕ̂(β) = 0 for
∣∣α
∣∣ ≤ k − 1 and ∀β ∈ L◦\{0}. (1.12a)

V(L, ϕ) contains Πk−1(R
s). (1.12b)

A proof of (1.12b) =⇒ (1.12a) is included in the chapter notes.

If, in addition to satisfying the Riesz basis condition introduced earlier, the kernel ϕ

also satisfies the Strang-Fix conditions of order k, then for any f ∈ W k
2 (R

s), there exists

a minimum error approximation fapp ∈ V(Lh, ϕ) such that ‖f − fapp‖ = O(hk). We do

not give a proof of this here and refer the reader to recent surveys on approximation in

shift-invariant spaces such as Jia [Jia95] or Jetter and Plonka [JP01]. Another important

survey (s = 1) geared towards the signal processing audience is due to Unser [Uns00].

The Strang-Fix conditions tell us that the space V(L, ϕ) can reproduce any polynomial

of degree at most k − 1. According to the Weirstrass theorem, polynomials are dense

in the space of continuous functions. Thus, any function that is sufficiently smooth can

be approximated in V(Lh, ϕ) to an arbitrary degree of accuracy, the rate of decay of the

L2-error being governed by the Strang-Fix conditions. The minimum requirement for a

convergent approximation scheme is imposed by the Strang-Fix conditions of order 1, often

termed as the partition of unity which states that the lattice translates of ϕ must reproduce

unity, i.e.

∑

n∈Zs
ϕ(x− Ln) = 1, or equivalently, ϕ̂(0) = 1 and ϕ̂(β) = 0 ∀β ∈ L◦\{0}. (1.13)

This condition can also be directly derived in the spatial domain by considering the Taylor

expansion of the reconstruction sum [MMMY97b].

The Strang-Fix conditions also play an important role in wavelet analysis where, in

addition to satisfying these conditions, an admissible scaling function must also satisfy a

self-similarity relationship that ensures that a nested hierarchy of approximation spaces can

be constructed. These self-similar scaling functions are often constructed using a subdi-

vision scheme that starts with a compactly supported mask defined on L. An iterative
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procedure is then employed to refine the mask until it converges to the admissible kernel

ϕ (see e.g. Jia [Jia98] and references therein). In this work, we do not focus on wavelets

or multiresolution analysis and therefore, do not require that ϕ satisfies any self-similarity

relations.

1.1.4 Goals

There are many admissible kernels that are widely used in practice, the most familiar being

the B-splines [deB01] (s = 1) and their tensor-product extensions (s > 1). In fact, the use

of splines is so common that shift-invariant spaces are also frequently known as spline-like

spaces. Most effort on multivariate spline-like approximation spaces has focused on the

integer lattice Zs where a 1D kernel can be employed via a simple tensor-product extension.

Non-separable kernels have also been proposed, the most notable example being the box

splines [dHR93].

Recently, the BCC lattice, owing to its sampling optimality, has gained attention spe-

cially in the fields of computer graphics and visualization. Justification for using the BCC

sampling lattice usually follows the bandlimited model which argues that a BCC lattice

can capture the same isotropically bandlimited spectrum as the CC lattice, with 30% fewer

samples [TMG01]. However, this is only true if the appropriate sincL function is used as

the reconstruction kernel. Most practical approximation and interpolation schemes on the

BCC lattice however, use more localized kernels such as box splines. How relevant is the

bandlimited argument in this context? What can we say about the L2-error of such schemes

as compared to similar schemes used on the CC lattice? In this chapter, we review some of

the recently proposed BCC reconstruction kernels and compare them with their CC counter-

parts in light of the theoretical analysis tools introduced earlier. In Section 1.2, we introduce

some quantitative analysis tools that can be used to compare the approximation quality of

interpolative and quasi-interpolative schemes while Section 1.3 compares such schemes on

the CC and BCC lattices.

1.2 Quantitative Error Analysis

We have seen that the Strang-Fix conditions characterize the approximation characteris-

tics of the orthogonal projection of f onto the desired space V(Lh, ϕ). Such an approx-

imation scheme requires that the function measurements be made with respect to a dual
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basis (Section 1.2.1). In many practical problems of interest, one is often not able to

modify the measurement procedure. The measurements are made using some sort of a

point spread function (PSF) that cannot be altered. Typically, the PSF is assumed to be

Dirac’s delta distribution δ(x) and what we get as a starting point is a sequence of sample

values f(hLn). The subsequent approximation schemes are sub-optimal and employ either

interpolative or quasi-interpolative models (Section 1.2.3). How does the L2-error behave

for such schemes as compared to the error predicted by the Strang-Fix conditions? We take

a closer look at this question in Section 1.2.4. However, before proceeding further, we need

to introduce some additional notations and definitions.

The discrete-time Fourier transform (DTFT) [DM84] of a sequence c[·] associated with

L is defined as

Ĉ(ω) :=
∑

n∈Zs
c[n] exp(−2πıωTLn). (1.14)

It is periodic with respect to the dual lattice L◦, i.e. Ĉ(ω+L−Tm) = Ĉ(ω), for m ∈ Zs. In

order to distinguish between the DTFT and the Fourier transform, we shall use a lower-case

symbol to denote a discrete sequence in the spatial domain, and the corresponding upper-

case symbol to denote its DTFT. We shall also make use of the symbol ↔ interchangeably

to indicate transform pairs. Thus, for a function f , we have the Fourier transform pairs

f(x) ↔ f̂(ω), and for a discrete sequence c, we have the DTFT pairs c[n] ↔ Ĉ(ω). Usually,

when there is no room for ambiguity, we shall also omit the parentheses (·) and the square

brackets [·].
The autocorrelation sequence of ϕ with respect to the lattice L is defined as

aϕ[n] :=
〈
ϕ,ϕn

〉
=
(
ϕ ∗ ϕ

)
(Ln), (1.15)

where ∗ represents the continuous convolution operation and ϕ(x) := ϕ(−x). The Riesz ba-

sis condition (1.9) has a simple characterization in the Fourier domain in terms of Âϕ [AU94]

given by

A ≤ Âϕ(ω) ≤ B. (1.16)

1.2.1 Minimum Error Approximation

If the lattice translates {ϕh,n}n∈Zs form a Riesz basis, then there exists a dual kernel ϕ̊ ∈
V(L, ϕ) such that the shifts { 1

hs ϕ̊h,n}n∈Zs form a basis that is biorthonormal. In other words,
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〈
ϕh,n,

1
hs ϕ̊h,l

〉
= δn−l, where δn−l is Kronecker’s delta function. Using this biorthonormality

relationship and the fact that ϕ̊ ∈ V(L, ϕ), it can be shown that

ϕ̊(x) =
∑

n∈Zs
a−1
ϕ [n]ϕ(x− Ln), (1.17)

where the sequence a−1
ϕ is related to the autocorrelation sequence according to a−1

ϕ [n] ↔
1/Âϕ(ω) [Uns00]. From this, we can easily infer that ϕ̊(x) ↔ ϕ̂(ω)

Âϕ(ω)
.

Orthogonal Projection: The orthogonal projection of f onto V(Lh, ϕ) is obtained by

taking inner products with the duals ϕ̊h,n [Uns00]. In particular, the orthogonal projection

is given by

(
PV(Lh,ϕ)f

)
(x) :=

∑

n

c[n]ϕ(
x

h
− Ln), where c[n] =

〈
f,

1

hs
ϕ̊h,n

〉
. (1.18)

According to the Hilbert projection theorem [Kre89], an approximation fapp ∈ V(Lh, ϕ) of
f minimizes the L2-error ‖f − fapp‖ if and only if fapp = PV(Lh,ϕ)f .

If the function f is sufficiently smooth, i.e. f ∈ W k
2 (R

s), and ϕ is compactly supported

and satisfies the Strang-Fix conditions of order k, then ‖f −
(
PV(Lh,ϕ)f

)
‖ = O(hk) as

h → 0 [JP01, Theorem 2.3.12]. For a convergence rate that is O(hk), the Strang-Fix

conditions are equivalent to saying that ϕ has vanishing moments up to order k−1 [Uns96].

This suggests that the asymptotic error is dominated by the k-th order moments. For s = 1,

a tight bound can be obtained in terms of the derivatives of ϕ̂. In particular, we have the

following error bound.

‖f − PV(Zh,ϕ)f‖ ≤ Cϕ‖Dkf‖hk as h→ 0, (1.19)

where the constant Cϕ is given by

Cϕ =
1

k!

√∑

n 6=0

∣∣Dkϕ̂(n)
∣∣2 (1.20)

[Uns96, Eq. 17]. For s > 1, the convergence is determined by a combination of the various

k-th order moments. We shall revisit this issue in Section 1.2.4.

1.2.2 Approximation of Bandlimited Functions

It is also useful to revisit the problem of bandlimited recovery from the perspective of the

space V(Lh, sincL). It is easily shown that ÂsincL(ω) = 1, which is what we would expect
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since the shifts {sincL(· − Ln)}n∈Zs form an orthonormal basis. If f is bandlimited, then

there exists a scale h0 such that
(
PV(Lh,sincL)f

)
= f whenever h < h0, and we have perfect

reconstruction. Moreover, when h < h0, the inner products simply yield the sample values

i.e.,
〈
f, 1

hs sincL(
·
h − Ln)

〉
= f(hLn), and we can safely use Dirac’s delta δ(x) instead of

the dual 1
hs sincL(

x
h ) as a measurement device. On the other hand, if f is not bandlimited,

then the same inner products serve the role of an ideal low pass prefilter that is applied to

f and the resulting approximation
(
PV(Lh,sincL)f

)
is the closest bandlimited approximation

of f in V(Lh, sincL), the error of which behaves as O(hk) where k is the maximum Sobolev

regularity exponent of f [JP01, Lemma 2.3.2].

Another interesting case that has received a great deal of attention in signal processing

and computer graphics is the use of a compact generator ϕ to approximate a bandlimited

function f in the shift-invariant space V(Lh, ϕ). Traditionally, this problem has been in-

vestigated in the univariate setting where the errors are classified as either prealiasing or

postaliasing artifacts [ML94,MN88, Key81]. Prealiasing occurs when either the sampling

rate is not sufficient or when the function of interest is not appropriately prefiltered. On the

other hand, postaliasing refers to the fact that the Fourier transform of a compact recon-

struction kernel ϕ̂ has a slow rate of decay and picks up aliases of the spectrum in addition

to the central copy.

In the multivariate shift-invariant setting, we can quantitatively analyze these phenom-

ena in terms of a frequency error kernel that yields the L2-error ‖f − PV(Lh,ϕ)f‖. Without

loss of generality, let us assume that h = 1 and that f is bandlimited such that f̂ is com-

pletely supported inside VL◦ , the Voronoi cell of L◦ centered around ω = 0. Using Parseval’s

relation [Pin02] and the fact that PV(L,ϕ)f is the orthogonal projection of f onto V(L, ϕ),
we have

‖f − PV(L,ϕ)f‖2 = ‖f‖2 − ‖PV(L,ϕ)f‖2 = ‖f̂‖2 − ‖ ̂PV(L,ϕ)f‖2.

Taking the Fourier transform of (1.18), we obtain

( ̂PV(L,ϕ)f)(ω) =
ϕ̂(ω)

Âϕ(ω)
F̂ϕ(ω), where the periodic function F̂ϕ(ω) :=

∑

r∈L◦

f̂(ω−r)ϕ̂⋆(ω−r).
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We can now express the L2-error in terms of an integral over VL◦ .

‖f − PV(L,ϕ)‖2 =
∫

Rs

(∣∣f̂(ω)
∣∣2 −

∣∣ ϕ̂(ω)

Âϕ(ω)
F̂ϕ(ω)

∣∣2
)
dω

=

∫

VL◦

(∣∣f̂(ω)
∣∣2 −

∣∣ F̂ϕ(ω)

Âϕ(ω)

∣∣2 ∑

r∈L◦

∣∣ϕ̂(ω − r)
∣∣2
)
dω

=

∫

VL◦

∣∣f̂(ω)
∣∣2
(
1−

∣∣ϕ̂(ω)
∣∣2

Âϕ(ω)

)
dω =

∫

Rs

∣∣f̂(ω)
∣∣2
(
1−

∣∣ϕ̂(ω)
∣∣2

Âϕ(ω)

)
dω.

(1.21)

Here we have used the fact that
∑

r∈L◦
∣∣ϕ̂(ω − r)

∣∣2 = Âϕ(ω), and since f is bandlimited,∣∣F̂ϕ(ω)
∣∣2 =

∣∣f̂(ω)ϕ̂(ω)
∣∣2 inside VL◦ . This formula was initially proposed by de Boor et al.

in the context of the integer lattice Zs [dDR94, Theorem 2.20]. Here we have generalized

it to arbitrary sampling lattices. Lifting the restriction on h, we obtain the following result

for the asymptotic L2-error [JP01, Theorem 2.3.10].

‖f − PV(Lh,ϕ)f‖2 =
∫

Rs

∣∣f̂(ω)
∣∣2Emin(hω) dω = O(hk), as h→ 0. (1.22)

The minimum error kernel is defined as

Emin(ω) := 1−
∣∣ϕ̂(ω)

∣∣2

Âϕ(ω)
. (1.23)

Although this error kernel is derived from the perspective of bandlimited functions, it is

actually more general. It can also be used to predict the L2-error for bandlimited functions

that are undersampled as well as non-bandlimited functions as explained in Section 1.2.4.

It is also valid for both compact and non-compact generators ϕ. Indeed, it is easy to check

that when ϕ = sincL, Emin(ω) = 1− 1VL◦ (ω), which completely vanishes inside VL◦ .

1.2.3 Interpolation and Quasi-interpolation

In many practical cases of interest, f is only known through its point samples on Lh. In

such cases, the orthogonal projection cannot be realized and one aims to obtain an oblique

projection that is optimal in an asymptotic sense, i.e. it has the same order of decay as

the orthogonal projection, albeit, with a higher constant. The two models we are going

to consider here are commonly referred to as interpolation and quasi-interpolation. They

both achieve an O(hk) rate of decay where k is the approximation order provided by the

reconstruction kernel ϕ.
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The approximation formula used to obtain fapp is similar to the one used for the or-

thogonal projection (1.18) except for the addition of a correction step that attempts to

compensate for the deviation from orthogonality. Denoting f [n] = f(hLn) as the point

samples of f , the oblique projection is given by

fapp(x) =
∑

n

(f ∗ q)[n]ϕ(x
h
− Ln), (1.24)

where q is a correction filter that is applied to the measurements via a discrete convolution

operation (denoted by ∗). A useful notion for oblique projections is that of consistency

which imposes the requirement that both f and its oblique projection fapp be consistent

with respect to point sampling measurements [Uns00]. In other words,

f [m] = f(hLm) = fapp(hLm) =
∑

n∈Zs
(f ∗ q)[n]ϕ(L(m− n)). (1.25)

In the signal processing literature, this requirement is a special case of consistent sam-

pling [Uns00]. Both interpolation and quasi-interpolation can be cast into this framework. If

the reconstruction kernel ϕ satisfies the consistency requirement (1.25) for any f ∈W k
2 (R

s),

we have an interpolation scheme. On the other hand, if this requirement is only satisfied

for f ∈ Πk−1(R
s), we have a quasi-interpolation scheme.

For an admissible kernel ϕ, an interpolation filter can be obtained by solving the linear

system formed by the consistency requirement (1.25). An easier alternative is to analyze

this requirement in the Fourier domain to obtain the correction filter [Uns00]. Denoting

pϕ[n] := ϕ(Ln) as the sampled sequence of ϕ, the DTFT of (1.25) yields

F̂ (ω) = F̂ (ω)Q̂(ω)P̂ϕ(ω). (1.26)

From here, we infer that

Q̂(ω) = 1/P̂ϕ(ω). (1.27)

Using the inverse sequence p−1
ϕ [n] ↔ 1/P̂ϕ(ω), we can define an equivalent kernel as

ϕeq(x) :=
∑

n p
−1
ϕ [n]ϕ(x−Ln). By construction, this kernel is interpolating i.e. ϕeq(Ln) =

δ0.

For a quasi-interpolation scheme, the consistency requirement (1.25) is actually a strong

requirement. Since ϕ satisfies the Strang-Fix conditions of order k, it reproduces all poly-

nomials in Πk−1. This implies that fapp must be exact, i.e.

∀f ∈ Πk−1(R
s), fapp =

∑

n∈Zs
(f ∗ q)[n]ϕ(x− Ln) = f(x). (1.28)
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This imposes some constraints on the admissibility of the quasi-interpolation filter q. In par-

ticular,
∣∣Q̂(ω)

∣∣2 must be bounded from above and below [AU94, Prop. 6] (see also the Riesz

basis condition (1.16)). For an admissible kernel ϕ, the interpolation filter p−1
ϕ introduced

earlier is also a quasi-interpolation filter.

The asymptotic decay of the L2-error of these sub-optimal approximation schemes has

been well studied (see e.g. [CD90,UD97,BU99b] and references therein). We present here

some of the core approximation theoretic ideas that attempt to quantify the lack of biorthog-

onality between q and ϕ. These ideas can also be succinctly captured in terms of a Fourier

error kernel which is similar to the bandlimited error kernel (1.23). We shall introduce this

error kernel formulation in the next section.

Intuitively, an oblique projection and an orthogonal projection will asymptotically be-

have similarly as long as they are indistinguishable for any f ∈ Πk−1(R
s), where k is the

approximation order provided by ϕ. This is the same as saying that the continuous moments

of ϕ̊ match the discrete moments of q up to order (k − 1). This concept goes by the name

of quasi-biorthonormality.

Quasi-biorthonormality: The oblique projection correction filter q and the reconstruc-

tion kernel ϕ are said to be quasi-biorthonormal of order k if for all monomials xα :=

xα1
1 · · ·xαss with

∣∣α
∣∣ ≤ (k − 1),

∫

Rs
xαϕ̊(x)dx =

∑

n

(Ln)αq[n]. (1.29a)

This condition has the following equivalent formulation in the Fourier domain [BU99b,

Lemma 2].

Q̂⋆(ω)ϕ̂(ω + L−Tn) = δn +O(‖ω‖k), ∀n ∈ Z
s. (1.29b)

If there is order k quasi-biorthonormality between q and ϕ, then for any f ∈ W k
2 (R

s),

the approximation fapp ∈ V(Lh, ϕ) obtained via (1.24) satisfies ‖f − fapp‖ = O(hk), as

h→ 0 [BU99b, Theorem 1]. In the univariate setting, a tight bound exists and is related to

the k-th order derivatives of ϕ̂ [UD97, Prop. 5.1]. Particularly, we have

‖f − fapp‖ ≤ CQ
ϕ ‖Dkf‖hk as h→ 0, where CQ

ϕ =
1

k!

√∑

n∈Z

∣∣Dkϕ̂(n)
∣∣2. (1.30)

Note that the asymptotic constant CQ
ϕ is the same as the minimum error constant Cϕ (1.20)

except for the additional contribution due to the n = 0 term.
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1.2.4 Fourier Error Kernel

Most of the ideas discussed so far can be succinctly expressed in terms of a Fourier domain

error kernel proposed by Blu and Unser [BU99a,BU99b] in the univariate setting. We present

the multivariate extension of this kernel here and remark on the equivalence between the

asymptotic error behaviour predicted by this kernel and the results presented in the previous

sections.

The error kernel E(ω) is composed of two additive terms, a minimum orthogonal pro-

jection error term and a residue error term that comes into play when the approximation is

sub-optimal. It is defined as

E(ω) := 1−
∣∣ϕ̂(ω)

∣∣2

Âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ Âϕ(ω)
∣∣Q̂(ω)− ˆ̊ϕ(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

. (1.31)

Denoting fξ(x) := f(x− ξ) as a shifted version of f , the error kernel can be used to obtain

the L2-error between fξ and its approximation fξapp ∈ V(Lh, ϕ), averaged over all possible

shifts ξ ∈ Rs. In particular [BU99a, Theorem 2],

1

hs

∫

VLh

‖fξ − fξapp‖2dξ =

∫

Rs

∣∣f̂(ω)
∣∣2E(hω)dω. (1.32)

Observe that Emin(ω) also appears earlier in (1.22) in the context of bandlimited functions.

Here, it appears again in a more general context. All that is required is that f be no more

than continuous, which is satisfied whenever f ∈W r
2 (R

s) with r > 1
2 . For an orthogonal pro-

jection, the residue term vanishes and the average minimum error is quantified by Emin(ω).

On the other hand, for interpolative and quasi-interpolative approximation scenarios there

is additional error that is quantified by Eres(ω).

Besides quantifying the average error, the kernel E(ω) can also be used to obtain an

upper bound for the asymptotic error. Indeed, the Strang-Fix conditions (1.12) and quasi-

biorthonormality (1.29) have equivalent formulations in terms of Emin and Eres respectively.

For the Strang-Fix conditions, we have the following equivalence.

1. ϕ satisfies the Strang-Fix conditions of order k.

2. Emin(ω) = O(‖ω‖2k).

Quasi-birorthonormality can be expressed in terms of a similar equivalence.
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1. ϕ and q are quasi-birorthonormal of order k.

2. Eres(ω) = O(‖ω‖2k).

Furthermore, if ϕ satisfies the Strang-Fix conditions of order k, and there is order k

quasi-biorthonormality between q and ϕ, then the asymptotic error is bounded by the order

2k coefficients of the Taylor developments of E(ω) around ω = 0 [BU99a, Sec. IV]. In

particular,

‖f − fapp‖2 ≤ h2k
∑
∣∣α
∣∣=2k

(
DαE

)
(0)

α1! · · ·αs!
(∫

Rs
ωα1
1 · · ·ωαss

∣∣f̂(ω)
∣∣2dω

)
, as h→ 0, (1.33)

provided that f ∈ W k
2 (R

s). By restricting this result to the univariate setting, we can

also obtain the asymptotic constants Cϕ (1.20) and CQ
ϕ (1.30) [BU99a]. For the minimum

approximation scenario, it can be shown that

(
D2kEmin

)
(0)

(2k)!
=

1

(k!)2

∑

n 6=0

∣∣Dkϕ̂(n)
∣∣2 = C2

ϕ, (1.34)

whereas for the interpolation and quasi-interpolation scenarios, we have

(
D2kE

)
(0)

(2k)!
=

1

(k!)2

∑

n∈Z

∣∣Dkϕ̂(n)
∣∣2 = (CQ

ϕ )
2. (1.35)

In the univariate setting, this error kernel has been used to obtain splines that have

maximal approximation order with minimum support [BTU01], improve the quality of lin-

ear interpolation by a simple shift of the kernel [BTU04], and to design quasi-interpolating

prefilters [CBU05]. It has also been extended to handle the quantitative error analysis of

periodic functions [JBU02] and derivatives [CM11]. It is an attractive tool both from an anal-

ysis and design perspective. In the following section, we shall make use of it to compare the

approximation characteristics of shift-invariant spaces associated with the three-dimensional

cubic lattices.
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1.3 Shift-invariant Spaces on the Cubic Lattices

1.3.1 Three-dimensional Cubic Lattices

The (normalized) three-dimensional cubic lattices, namely, the CC lattice Z3, the BCC

lattice B, and the FCC lattice F are generated by the matrices

I =




1 0 0

0 1 0

0 0 1


 , B =

1
3
√
4




−1 1 1

1 −1 1

1 1 −1


 , and F =

1
3
√
2




0 1 1

1 0 1

1 1 0


 (1.36)

respectively. The BCC lattice, isotropically scaled by a factor of 3
√
4, is a sub-lattice of

the CC lattice that is obtained by retaining all those points whose coordinates have the

same parity, i.e. they are either all odd or they are all even. The resulting lattice is four

times less dense. In a similar fashion, the FCC lattice, scaled by a factor of 3
√
2, is a sub-

lattice of the CC lattice that satisfies the checkerboard property [CS99], i.e. it contains

all those points whose coordinate sum is even. The resulting lattice is therefore half as

dense. These lattices are also important in crystallography and solid state physics where

they are commonly known as the cubic Bravais lattices and describe the arrangement of

crystal systems [PB11]. The term ‘cubic’ stems from the fact that these lattices can all be

obtained from a tessellation of cubes. The CC lattice consists of the vertices of the cubes,

the scaled BCC lattice has an additional point in the center of each cube in addition to

the vertices, whereas the scaled FCC lattice consists of the six face centers of each cube in

addition to the vertices as shown in Fig. 1.1.

(a) CC (b) BCC (c) FCC

Figure 1.1: The three-dimensional cubic lattices.
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1.3.2 Sphere Packing

The sphere packing density of the cubic lattices is important from an approximation the-

oretic perspective as discussed earlier. When projecting a function to the cardinal space

V(L, sincL), the error is quantified by (1.23) with the kernel being Emin(ω) = 1− 1VL◦ (ω).

This kernel vanishes inside the Voronoi cell VL◦ , which implies that the only error contri-

bution is due to the out-of-band portion of the spectrum. Thus, the optimal lattice L is

the one that captures as much of the spectrum within VL◦ (also known as the Brillouin

zone [PB11]) as possible. When there are no preferred directions, the minimum error will

therefore be achieved by the lattice that maximizes the packing efficiency i.e., the ratio of

the volume of the inscribed sphere to the volume of the Brillouin zone.

Lattice

L (generator)
Dual

L◦ (generator)
Voronoi cell VL◦

(edge length a)
Inscribing

radius

Efficiency

CC: I CC: I Cube: a = 1 a

2

π

6
≈ 0.52

BCC: B FCC: F Rhombic dodecahe-
dron: a = 3

√
9

16
√
3

√
2

3
a [Wik12a] π

3
√
2
≈ 0.74

FCC: F BCC: B Truncated octahe-
dron: a = 3

√
1

8
√
2

√
6

2
a [Wik12b]

√
3π

8
≈ 0.68

Table 1.1: Packing efficiency of the three cubic lattices. The generating matrices are nor-
malized so that each lattice has a unit volume Voronoi cell. The volume of a rhombic
dodecahedron of edge length a is 16

9

√
3a3 [Wik12a], while that of a truncated octahedron of

edge length a is 8
√
2a3 [Wik12b].

As listed in Table 1.1, the self-dual CC lattice has the worst packing efficiency of the

three cubic lattices. The most efficient packing lattice is the FCC lattice which implies that

its dual, the BCC lattice is the most efficient sampling lattice. A more pictorial account

can be found in Entezari’s PhD thesis [Ent07].

1.3.3 Spline-like Spaces on the Cubic Lattices

Unlike the cardinal space V(Lh, sincL), spline-like spaces are spanned by the dilation and

shifts of compact spline-like generators that are easy to work with computationally since

they are built by piecing polynomials together. Such spaces are usually studied from the

perspective of the Cartesian lattice Zs, even though it has a poor packing efficiency. The

univariate B-splines [UAE93] are a popular choice since they can be easily extended to the

Cartesian lattice Zs via a separable tensor product. Non-separable spline kernels, albeit
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on the Cartesian lattice, have also been investigated (see e.g. [Chu88, dHR93,Wan01] and

references therein). One notable exception is the hex-splines [VBU+04,CVDV07] that reside

on the two-dimensional hexagonal lattice and are built by the successive convolutions of the

indicator function of the Voronoi cell of the hexagonal lattice.

There has been some recent progress towards the development of spline-like generators

on the non-Cartesian cubic lattices. Entezari et al. proposed second and fourth order

box splines for function approximation on the BCC lattice [EDM04]. They later derived

closed from polynomial representations [EVM08], proposed quasi-interpolants [EMK09] and

implemented their efficient approximation algorithm on the GPU [FEVM10]. Kim et al. in-

vestigated box-spline generators on the FCC lattice [KEP08], and later generalized their con-

struction scheme to the (non-Cartesian) root lattices in arbitrary dimension [KP10,KP11].

The idea of successively convolving the indicator function of the Voronoi cell has also

been investigated. Preliminary empirical studies on the BCC lattice were presented by

Csébfalvi [Csé08a]. Mirzargar and Entezari formalized this notion and proposed Voronoi

splines [ME10], as well as their associated quasi-interpolatants [ME11]. Another line of re-

search has focused on using the tensor-product B-splines on the BCC lattice [Csé10,DC10].

It is now well-known that spline like spaces on the non-Cartesian cubic lattices outper-

form their Cartesian counterparts. Additionally, reconstruction kernels on the non-Cartesian

lattices also tend to be more compact while providing the same order of accuracy as com-

pared to the CC lattice. However, comparisons of the various approximation spaces on the

cubic lattices have largely been qualitative [MES+11,DC11] and, to the best of our knowl-

edge, asymptotic bounds such as (1.20), (1.30), and (1.33) have not been investigated. In

the remainder of this chapter, we focus on establishing such bounds since they provide a

comparison that is more relevant in practical settings than the idealized packing efficiency

(Table 1.1).

1.3.4 Review of Box Splines

Many of the approximation spaces associated with the cubic lattices are spanned by box

spline generators. Consequently, we briefly review the topic of box splines here. For addi-

tional details, we refer the reader to the comprehensive text by de Boor et al. [dHR93].

The box splines are very useful reconstruction functions that are well suited for designing

approximation spaces on arbitrary sampling lattices. They can be constructed to satisfy the
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Strang-Fix relations (1.12), and have attractive mathematical properties similar to the B-

splines. Associated with a box spline in Rs is an s × n (n ≥ s) matrix Ξ = [ξ1 ξ2 · · · ξn]

consisting of direction vectors ξi. We denote this box spline as MΞ(x). It is obtained

by successively convolving line segments along the direction vectors contained in Ξ. The

simplest box spline is obtained by choosing n = s linearly independent direction vectors and

is the indicator function of the parallelepiped formed by these direction vectors. Successive

directional convolutions are defined inductively as

M[Ξ ξ](x) :=

∫ 1

0
MΞ(x− tξ)dt. (1.37)

The box splines have a simple Fourier domain representation given by

M̂Ξ(ω) =
n∏

i=1

1− exp(−2πıξi
Tω)

2πıξi
Tω

. (1.38)

The support ofMΞ consists of all the points contained within the polytope formed by taking

the Minkowski sum of the direction vectors in Ξ. This implies that MΞ is centered at the

point cΞ :=
∑n

i=1
1
2ξi. When the box spline MΞ is used in conjunction with the Cartesian

lattice Zs, the smoothness and approximation order of the space V(Zsh,MΞ) can be readily

obtained simply by inspecting the columns of Ξ [dHR93].

We now restrict attention to the case s = 3 and summarize the key features of some box

spline spaces associated with the cubic lattices.

Tensor-product B-splines

The non-centered tensor product B-splines are a special case of the box splines obtained by

choosing Ik := [I · · · I] (k repetitions) as the direction matrix. A closed form representation

in terms of the centered B-splines βk(x) is given by

MIk(x) =
3∏

i=1

βk(xi+
k+1
2 ), where βk(x) :=

k+1∑

j=0

(−1)j

k!

(
k + 1

j

)(
x+

k + 1

2
− j

)k

+

, (1.39)

and (x)k+ := max(0, x)k [UAE93].

We shall be making extensive use of the trivariate centered tensor-product B-splines and

denote them as Bk(x) :=
∏3
i=1 β

k(xi), where k is the polynomial degree of the univariate

centered B-spline βk(x). They are commonly used in conjunction with the CC lattice to

approximate functions in the space V(Z3
h, B

k), providing an approximation order of (k +

1) [BTU01]. In fact, they are precisely the Voronoi splines of the CC lattice [ME10].
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Rhombic Dodecahedral Box Splines

As the name suggests, these box splines are constructed by successive convolutions of a

fundamental box spline that is completely supported within a rhombic dodecahedron formed

by the Voronoi relevant neighbors of the BCC lattice [EDM04, EVM08] (Fig. 1.2). The

fundamental four-directional box spline is built from the direction matrix

Θ :=
[
θ1 θ2 θ3 θ4

]
=

1
3
√
4




1 1 −1 −1

1 −1 1 −1

−1 1 1 −1


 , (1.40)

and consists of linear polynomial pieces. When used in conjunction with the BCC lattice

to approximate in the space V(Bh,MΘ), it provides a second-order approximation. The

approximation order can be successively increased by convolving this box spline with itself.

Thus, Θk, the matrix obtained by appending k copies of Θ, gives rise to a box spline that

has an approximation order of 2k. In particular, MΘ2 consists of quintic polynomial pieces

and provides a fourth order approximation on the BCC lattice.

Figure 1.2: The Voronoi cell of the BCC lattice is a truncated octahedron (blue). The
Voronoi relevant neighbors form a rhombic dodecahedron (green) that is also the support
of the linear box spline.
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Voronoi Splines on the FCC Lattice

The Voronoi cell of the FCC lattice, isotropically scaled by a factor of 3
√
2, is a rhombic

dodecahedron having a volume of 2. It can be split up into four parallelepipeds by choosing

any three linearly independent vectors (scaled by 1
2) from the direction matrix Θ. The

first-order Voronoi spline on the scaled FCC lattice can therefore be expressed as a linear

combination of four three-directional box splines [ME10]. It is given by

V F
0 =

1

4

(
M1

2 [θ1 θ2 θ3]
+M1

2 [θ1 θ2 θ4]
+M1

2 [θ1 θ3 θ4]
+M1

2 [θ2 θ3 θ4]

)
, (1.41)

where the leading normalization factor ensures that
∫
VF
V F
0 (x)dx = 1. Higher order Voronoi

splines are given by the recursive convolution relationship

V F
k (x) =

(
V F
k−1 ∗ V F

0

)
(x), (1.42)

which ensures that each successive convolution increases the approximation order by one.

Thus, V F
k has an approximation order of k + 1 on the FCC lattice. By substituting the

box spline pieces (1.41) into the convolution relationship (1.42), one can also obtain the

constituent box splines of the higher order Voronoi spline V F
k .

Voronoi splines on the BCC lattice can be similarly characterized in terms of a six-

directional box spline. However, the construction is slightly more involved and relies on

breaking up a truncated octahedron into sixteen parallelepipeds [ME10].

1.3.5 Comparison of Approximation Spaces

We can now use the analysis tools introduced earlier to quantitatively compare the approx-

imation spaces associated with the cubic lattices. We focus on the orthogonal projection

case since it gives us a sense of the minimum error achievable by a lattice.

Error for Radially Bandlimited Functions

Without loss of generality, let us assume that the function of interest is radially bandlimited

with its spectrum completely contained in the unit diameter sphere S := {ω ∈ R3 : ‖ω‖ ≤
1
2}. Using (1.22), the squared L2-error at scale h is bounded according to

‖f − fapp‖2 =
∫

S

∣∣f̂(ω)
∣∣2Emin(hω)dω ≤ ‖

∣∣f̂
∣∣2‖∞ η(h), (1.43)
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where η(h) :=
∫
S
Emin(hω)dω. The measure η(h) tells us how good a space is in approxi-

mating functions that are radially bandlimited. It also measures the exact approximation

error for the three-dimensional jinc function f(x) = 2
√
2
J3/2(π‖x‖)

‖x‖3/2 , where J3/2 is the Bessel

function of the first kind of order 3/2. The Fourier transform of this function is a unit

diameter sphere [Miz73].

Using this definition of η(h) on the CC lattice, if f were to be point-sampled, it would

be critically sampled when h = 1, undersampled when h > 1 and oversampled when h < 1.

Note that η(h) measures the orthogonal projection error which attempts to quantify the

minimum error achievable. On the other hand, measures such as prealiasing and postaliasing

that compare ϕ̂ with 1VL◦ are sub-optimal since they do not take the autocorrelation function

Aϕ into consideration. Thus, η(h) veritably reflects the approximation capabilities of a

space.

Asymptotic Error for Isotropic Functions

When f is an isotropic function that belongs to W k
2 (R

3), the rate of decay of the error as

h → 0 can be obtained from the 2k order terms of the Taylor developments of Emin(ω)

around ω = 0. According to (1.33), the mean squared asymptotic error is dominated by

the 2k order terms where k is the approximation order. For an isotropic function, we can

use spherical coordinates to rearrange the right hand side of (1.33) to obtain

‖f − fapp‖2 ≤ Kfh
2kκ. (1.44)

Here, the constant Kf :=
∫∞
0

∣∣f̂(r)
∣∣2r2(k+1)dr < ∞ and κ :=

∫ 2π
0

∫ π
0 Cop(θ, φ) sin θ dθdφ,

where the spherical function Cop(θ, φ) is obtained from the Taylor developments of Emin(ω)

according to

Cop(θ, φ) =
∑
∣∣α
∣∣=2k

(
DαEmin

)
(0)

α1!α2!α3!
(sin θ cosφ)α1(sin θ sinφ)α2(cos θ)α3 . (1.45)

Thus, the constant κ provides an upper bound for the asymptotic error when approximating

isotropic functions that belong to W k
2 (R

3).

The main ingredient for both the measures η(h) and κ is the minimum error kernel

Emin(ω) which can be evaluated in closed form for a variety of spaces of interest. Particularly,

we need the Fourier transform of the generator ϕ and the DTFT of its autocorrelation

sequence (1.15). For the box splines, the Fourier transform is given by (1.38) while the
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Figure 1.3: The variation of
√
η(h) for a variety of approximation spaces on the cubic

lattices. For the first-order Voronoi spline on FCC, τ = h
3√2

. For each lattice, η(h) is

computed by numerically integrating the closed form expression for Emin(ω). Data for the
critically sampled case (h = 1) is also presented in Table 1.2.

autocorrelation sequence can be evaluated using the recursive algorithm of de Boor [deB93].

Owing to the algebraic complexity of the calculations involved, we resort to using a computer

algebra system such as Mathematica [Wol10].

Table 1.2: Comparison of approximation spaces associated with the cubic lattices

k Space Supp. 0.4489√
η(1)

√
κ 1

2π
√
6
/
√
κ

1
V(Z3

h, B
0) 1 1.000 1

2π
√
6

1.00

V(Bσ, V B
0 ) 1 1.021

√
19/3

32π 3√2
1.03

V(Fτ , V F
0 ) 1 1.020 1

4π 3√2
1.03

2
V(Z3

h, B
1) 8 2.005 1

20π
√
6

10.00

V(Bσ,MΘ) 4 2.041
√
11

120π 3√2
9.31

4
V(Z3

h, B
3) 64 3.836 1

720π
√
14

549.91

V(Bσ,MΘ2 ) 32 5.689

√
467
5

80640π 3√2
675.92

Figure 1.3 plots
√
η(h) for a number of sampling rates in the oversampled and undersam-

pled regimes. As expected, the oversampled regime reveals that the Voronoi spline spaces

V(Z3
h, B

0), V(Bh, V B
0 ), and V(Fτ , V F

0 ) exhibit a first-order decay; the spaces V(Z3
h, B

1) and

V(Bh,MΘ) have a second-order decay; and the spaces V(Z3
h, B

3) and V(Bh,MΘ2) have a
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fourth-order decay. A better sense of the rate of decay can also be obtained from the constant
√
κ which can be evaluated in closed form (Table 1.2). Asymptotically, the non-Cartesian

Voronoi spline spaces are marginally better that the Cartesian Voronoi spline space. A sim-

ilar trend is observed in the undersampled regime as well. Although not demonstrated here,

we expect that higher-order Voronoi spline spaces would only amplify this improvement.

The second-order trilinear B-spline space V(Z3
h, B

1) is asymptotically a little better than

the linear box spline space V(Bh,MΘ). However, this trend is reversed in the neighborhood

around h = 1 where the BCC lattice outperforms owing to its greater isotropy. This is quite

remarkable indeed since the linear box spline reconstruction, owing to its smaller support

as compared to the trilinear B-spline, only needs to access half as many coefficients. When

k = 4, the BCC box spline space V(Bh,MΘ2 ) has a distinct advantage over the Cartesian

space V(Z3
h, B

3). Again, this is noteworthy since a quintic box spline approximation needs to

access half as many coefficients as its Cartesian counterpart. Furthermore, the improvement

exists in the undersampled and oversampled regimes alike.

The advantage of the BCC lattice over the CC lattice has also been demonstrated em-

pirically for the critically sampled case [EDM04,EVM08,FEVM10]. However, to the best

of our knowledge, quantitative measures such as the ones listed in Table 1.2 have not been

explored before.

Although the BCC box spline spaces are spanned by more compact kernels, this does

not lead to faster evaluations in practice owing to the non-separability of the polynomial

pieces. In fact, the separable tensor-product B-splines lend themselves to highly optimized

software and GPU implementations that are more efficient as compared to their BCC coun-

terparts [FEVM10,Csé10].

1.4 Summary of Contributions

The substantial gain in approximation quality offered by the BCC lattice warrants that ac-

quisition and processing techniques be closely examined so that researchers and practitioners

have a viable alternative to the ubiquitous Cartesian lattice. This dissertation focuses on

the processing realm and makes the following contributions.
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Gradient Estimation. Our primary motivation for investigating this problem comes

from volume visualization where, the (normalized) gradient of a function is used to simu-

late the interaction of light with a three-dimensional volume. We cast this problem into

the framework of shift-invariant spaces. In Chapter 2, we use the lattice samples of f to

approximate the three orthogonal gradient components independently in the same shift-

invariant space V(Lh, ϕ). The coefficients are obtained by convolving the samples with

infinite impulse response (IIR) derivative filters. Since these filters are not compactly sup-

ported, they have to be applied in a preprocessing step, and the resulting coefficients have to

be stored in a gradient volume, thereby increasing the storage overhead. In order to mitigate

this overhead, Chapter 3 examines the problem in light of the quantitative analysis tools

introduced in Section 1.2. This results in a modified framework where the gradient com-

ponents — which are no longer required to be orthogonal — are approximated in separate

spaces that are spanned by shifted versions of a symmetric generator.

The Poisson Equation. In Chapter 4, we investigate the use of shift-invariant spaces in

solving inverse problems. In particular, we examine Poisson’s equation within a rectangular

domain with homogeneous Dirichlet boundary conditions. We analyze the problem in the

Fourier domain and identify the solution operator that needs to be discretized. One of our

main contributions is a reformulation of the Fourier error kernel of Blu and Unser [BU99a]

(see (1.31) on page 14) that allows us to quantify the error incurred when approximating a

derived quantity.

Discrete Fourier Transform on BCC. The FFT is a fundamental data processing

tool that extends to the CC lattice in a simple tensor product manner. In contrast, a

discrete Fourier transform (DFT) on the BCC lattice is non-separable. However, as we

demonstrate in Chapter 5, it can be made separable by choosing a rectangular sampling

window in the spatial domain. Choosing such a window amounts to a rectangular sampling

of the replicated spectra in the Fourier domain. We exploit the geometry of the dual FCC

lattice and identify suitable rectangular regions in the Fourier domain so that the FFT can

be used to evaluate the DFT as well as the DST. This allows us to efficiently implement

discrete convolution operations on the BCC lattice in the Fourier domain.
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1.5 Notes

1.5.1 Derivation of the Strang-Fix Conditions

The Strang-Fix conditions (1.12) are usually studied from the perspective of the integer

lattice Zs (see e.g. [deB87, Jia98] for derivations). In order to make our presentation self-

contained, we show how to extend these conditions to arbitrary sampling lattices. For a

(normalized) sampling lattice L, the Strang-Fix conditions state that:

V(L, ϕ) contains Πk−1(R
s)

=⇒ ϕ̂(0) = 1, and Dαϕ̂(β) = 0 for
∣∣α
∣∣ ≤ k − 1 and ∀β ∈ L◦\{0}.

Proof. V(L, ϕ) contains Πk−1(R
s) means that, for any monomial xα = xα1

1 · · ·xαss with∣∣α
∣∣ ≤ (k − 1), ∑

n∈Zs
ϕ(x− Ln)(Ln)α = xα, ∀x ∈ R

s. (1.46)

For a fixed x ∈ Rs, define the function ψ(y) := ϕ(x− y)yα. Taking its Fourier transform,

we obtain ψ̂(ω) =
(
ı
2π

)∣∣α
∣∣
Dα

(
ϕ̂(−ω) exp

(
−2πıωTx

))
.

Using the Poisson summation formula (1.4) on the left hand side of (1.46), we get

∑

n∈Zs
ϕ(x− Ln)(Ln)α =

∑

n∈Zs
ψ(Ln)

=
∑

m∈Zs
ψ̂(−L−Tm)

=
( ı
2π

)∣∣α
∣∣ ∑

m∈Zs
exp
(
2πımTL−1x

)(
Dαϕ̂(L−Tm) +

(2π
ı

)∣∣α
∣∣
ϕ̂(L−Tm)xα

)

= xα provided that, ϕ̂(0) = 1 and Dαϕ̂(L−Tm) = 0 for
∣∣α
∣∣ ≤ (k − 1) and ∀m 6= 0.

1.5.2 Relationship between Pre/Post-aliasing and the Error Kernel

Prealiasing (smoothing) and postaliasing error metrics are commonly used in computer

graphics and visualization to quantify the deviation of a reconstruction kernel from the

ideal [ML94,MN88]. Here, we demonstrate that the Fourier error kernel (1.31) conveniently

encapsulates these error measures.

Let f be a bandlimited function and let f̂ be completely contained inside VL◦ . Sup-

pose that f has been critically point-sampled and is approximated so that fapp ∈ V(L, ϕ).
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From Section 1.2.4, we know that the error ‖f − fapp‖2 can be quantified using (1.31) with

Q̂(ω) = 1, i.e.

‖f − fapp‖2 =
∫

VL◦

∣∣f̂(ω)
∣∣2E(ω)dω,

where E(ω) = 1−
∣∣ϕ̂(ω)

∣∣2

Âϕ(ω)
+ Âϕ(ω)

∣∣1− ϕ̂(ω)

Âϕ(ω)

∣∣2. (1.47)

After simplifying (1.47), we obtain

E(ω) = 1− 2ϕ̂(ω) + Âϕ(ω)

= 1− 2ϕ̂(ω) +
∑

r∈L◦

∣∣ϕ̂(ω − r)
∣∣2

= 1− 2ϕ̂(ω) +
∣∣ϕ̂(ω)

∣∣2 +
∑

r∈L◦\{0}

∣∣ϕ̂(ω − r)
∣∣2

=
∣∣1− ϕ̂(ω)

∣∣2 +
∑

r∈L◦\{0}

∣∣ϕ̂(ω − r)
∣∣2.

The error is now given by

‖f − fapp‖2 =
∫

VL◦

∣∣f̂(ω)
∣∣2
(∣∣1− ϕ̂(ω)

∣∣2
︸ ︷︷ ︸

smoothing

+
∑

r∈L◦\{0}

∣∣ϕ̂(ω − r)
∣∣2

︸ ︷︷ ︸
postaliasing

)
dω.

Smoothing and postaliasing are immediately recognizable.



Chapter 2

Toward High-Quality Gradient

Estimation

2.1 Motivation

Volumetric data, typically given on a discrete lattice, is perceived as a continuous data

type and therefore requires the algorithms working on them to model the data as if it

were given in a continuous domain. Hence, interpolation and reconstruction are the key

aspects of any volumetric manipulation and have a tremendous impact on the quality and

efficiency of the underlying visualization task. While there has been a large body of work

on interpolation and reconstruction filter design, in many tasks we also need secondary in-

formation of the volumetric data, such as histograms for data exploration [KD98], gradients

for shading [MMK+98] or higher order gradients for illustrative rendering [KWTM03] and

feature detection [KTW06]. One could simply just take an interpolation kernel and con-

sider its analytical derivative as a proper derivative filter. However, this approach is not

only computationally inefficient, it also unnecessarily constrains the conditions on accuracy

and smoothness. Hence, a separate design of gradient estimation schemes can lead to much

better results. Therefore, we will consider the design of gradient estimation schemes in

this chapter. In particular, we consider the idea of approximation spaces introduced in the

previous chapter (see Section 1.1.2 on page 3), and seek to approximate derivatives in a

prescribed shift-invariant space. Our focus is on improved shading, with the assumption

that poor gradient estimation may overshadow the performance of a superior scalar data

28
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reconstruction filter, particularly when perceptual metrics are employed. For this reason, we

postulate that it is just as important to improve shading as it is to improve the interpolation

of the underlying function.

2.2 Related Work

In rendering, we are often concerned with the smoothness of the reconstruction. Towards

this end, Möller et al. [MMMY97b] provide a general filter design scheme that extends a

purely numerical approach based on a Taylor series expansion by incorporating smooth-

ness constraints. In a different work [MMK+98], they contrast two possible approaches to

gradient estimation - using a combination of discrete derivative filter with a continuous in-

terpolation filter or simply computing the derivative of the interpolation filter. While in the

former case, one has much better control over smoothness and accuracy, the latter case is

simply more attractive since it creates the exact gradient of the interpolated function. Here

we argue that for rendering applications, it is not paramount to compute the exact derivative

of the interpolated function, but it is preferable to compute the derivative that is closest to

the true underlying function. This allows us to incorporate smoothness constraints as well.

Despite these fundamental insights on function reconstruction, not much work has fo-

cused on derivative reconstruction, and to the best of our knowledge, no work has been

done on designing proper derivative filters for arbitrary lattices. While the idea of shift-

invariant spaces has been exploited in the visualization community to demonstrate the

tremendous impact prefiltering can have on both image quality as well as reconstruction

accuracy [FAVM09,Csé08b], it remains to be seen how effective prefiltering is for derivative

reconstruction. Similarly, for volume visualization tasks, the BCC lattice has been shown to

outperform the CC lattice [TMG01,NM02]. However, it is not clear whether the advantages

of the BCC lattice extend to gradient reconstruction as well. This chapter addresses this

issue too.

Outside the visualization community, there has been some progress in the way of gra-

dient estimation on regular lattices. Brekelmans et al. [BDHDH08] derive discrete filters

for gradient estimation using Lagrange polynomials on a CC lattice. They also compare

different discrete derivative filters in the presence of noise [BDHDH05]. Sun et al. [SKZC03]

develop a fourth order gradient estimation scheme for the hexagonal lattice in 2D only.
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However, assuming a Lagrange polynomial fit for the gradient estimation and using a dif-

ferent basis, for example, tricubic B-splines for data reconstruction may not yield the most

optimal surface shading. We address this in our method (Section 2.3 on page 30) where

we take the reconstruction kernel into account and derive discrete derivative filters that are

optimized for it.

One track of research has focused on designing digital derivative filters in the Fourier

domain. These techniques inherently assume an underlying band-limited signal. Most

methods have focused on designing filters in 1D where derivative reconstruction corresponds

to a multiplication with a unit slope ramp in the frequency domain [BML96,Gos94]. The

ideal discrete derivative filter in that case is the IIR sinc′ sampled at the grid points. The

continuous derivative can then be recovered by using the sinc as an interpolation kernel on

the filtered signal. However, most methods seek to recover the derivative at the grid points

only for which, a digital filtering solution suffices. Because of the slow decay, sinc′ is rarely

used in practice and many approximations have been proposed. These approximations

proceed by appropriately choosing a design criterion in the frequency domain and then

optimizing it to yield either IIR or finite impulse response (FIR) filters in the spatial domain.

For example, Dutta Roy and Kumar [DK93] design 1D FIR filters that are maximally linear

over a specified frequency band and therefore attempt to match the unit slope ramp as closely

as possible within the band. Farid and Simoncelli [FS04] choose the rotation invariance of

the gradient operator in higher dimensions as an optimality criterion to design separable

FIR filters. We are unaware of any Fourier domain techniques that design non-separable

derivative filters for arbitrary sampling lattices in higher dimensions.

In comparison to Fourier domain techniques, our proposed method is different for two

main reasons. Firstly, we are interested in volume visualization as a primary application

and for that, we need to accurately estimate derivatives everywhere and not just at the

sample points. Secondly, we are not tied to the band-limitedness assumption, this allows us

to employ approximation theoretic techniques in our design methodology.

2.3 Orthogonal Projections

While Chapter 1 presented an overview of function approximation from lattice measurements

in Rs, here we shall focus on the dimension s = 3 and restrict attention to real-valued, mea-

surable functions that belong to the Hilbert space L2(R
3). However, our design methodology
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Figure 2.1: An illustration of the two-stage gradient estimation framework.

can be easily generalized to any dimension s.

2.3.1 Gradient Approximation

Typically in visualization applications, a sequence consisting of the sample values of an

unknown function f is already given to us which makes the orthogonal projection (see (1.18)

on page 9) unrealizable. Our goal is to accurately estimate ∇f , the gradient of f from the

given sampled sequence. This can be accomplished using a two-stage procedure as suggested

by Unser [Uns95]. In the first stage, we approximate f in an auxiliary approximation space

V(Lh, ψ) and in the second stage, we orthogonally project the gradient of the approximation

of f onto a target approximation space V(Lh, ϕ) (Figure 2.1). The generating functions ψ

and ϕ can be chosen according to the needs of the application. When accuracy is of prime

importance, ψ should be chosen to have a higher approximation order as compared to ϕ.

On the other hand, when visual quality and efficiency are important, ψ can be chosen

so that it has comparable smoothness properties. Note that V(Lh, ψ) is an intermediate

approximation space which, as we shall soon see, governs the order and size of the discrete

derivative filter that is to be applied to the samples of f . The final gradient approximation

lies in the target space V(Lh, ϕ) where ϕ plays the role of a reconstruction kernel.

Let f [n] = f(hLn) be the given sampled sequence and let fapp(x) =
∑

n c1[n]ψh,n(x)

denote the first-stage approximation of f . Since we do not have any knowledge of the
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underlying function f other than its sample values, we consider a design based on con-

sistency, i.e. the coefficient sequence c1 should be such that the first-stage approxima-

tion should be able to exactly interpolate f at the sample locations. In other words,

fapp(hLn) =
∑

n c1[n]ψh,n(hLn) = f [n]. If the basis functions ψh,n are interpolating

(i.e. ψh,n(hLm) = δn−m), the coefficient sequence c1 is exactly equivalent to the sam-

pled sequence f . However, if the basis functions are not interpolating, c1 can be obtained

from the sampled sequence f by applying a suitable interpolation prefilter (Section 1.2.3).

Denoting this prefilter as p1[·] ↔ P̂1(), the first-stage approximation can be written as

fapp(x) =
∑

n

c1[n]ψh,n(x) =
∑

n

(f ∗ p1) [n]ψh,n(x). (2.1)

Recall that the prefilter p1 is given in the Fourier domain (see (1.27) on page 12 and (1.14)

on page 8) by

P̂1(ω) =
1∑

n ψ(Ln) exp (−2πıωTLn)
. (2.2)

As discussed earlier, this prefiltering step not only makes the basis functions interpolating, it

is also necessary to utilize the full approximation power of the generating function [BU99a].

In the second-stage, we project∇fapp onto the target space V(Lh, ϕ). This is tantamount

to performing three orthogonal projections, one for each component of the gradient. Let ∂if

denote the partial derivative ∂f
∂xi

, i ∈ {1, 2, 3}. Applying the orthogonal projection (1.18) to

the gradient of the first-stage approximation (2.1), the second-stage approximation of ∂if

is given by

f iapp(x) :=
(
PV(Lh,ϕ)∂ifapp

)
(x) =

∑

n

〈
∂ifapp, ϕ̊h,n

〉
ϕh,k(x)

=
∑

n,m

c1[m]
〈
∂iψh,m, ϕ̊h,n

〉
ϕh,k(x) =

∑

n,m

c1[m]
〈
∂iψh, ϕ̊h,n−m

〉
ϕh,k(x)

=
∑

n

(c1 ∗ d̊i)[n]ϕh,n(x),

(2.3)

where d̊i is a digital derivative filter given by the inner product

d̊i[n] :=
〈
∂iψh, ϕ̊h,n

〉
. (2.4)

2.3.2 Examples

Once ψ and ϕ have been chosen, the remaining key step in the above scheme is the evaluation

of the inner product (2.4) that yields the discrete derivative filter d̊i. Here we focus on the CC
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and BCC lattices and show how the 1D B-splines can be used to design derivative filters that

implement the above two-stage approximation scheme. In particular, on the CC lattice, we

work with generating functions formed by tensor-product B-splines (Section 1.3.4) and for

the BCC lattice, we employ the rhombic dodecahedral box splines (Section 1.3.4) introduced

by Entezari et al. [EVM08].

Let βk(x) be the centered 1D B-spline of degree k (see (1.39) on page 19) and let

βk⊲ (x) := βk(x − k+1
2 ) be the corresponding non-centered B-spline that is supported in the

interval [0, k+ 1]. A very useful property of the B-splines that we shall exploit is that their

derivatives can be expressed in terms of lower degree B-splines [UAE93]. In particular,

β́k(x) :=
dβk(x)

dx
= βk−1(x+ 1

2)− βk−1(x− 1
2), and

β́k⊲ (x) :=
dβk⊲ (x)

dx
= βk−1

⊲ (x)− βk−1
⊲ (x− 1).

(2.5)

Before delving into the specifics of the CC and BCC lattices, we mention the convolution

interpretation of (2.4) that will aid us in our design. Owing to the shift-invariance of the

basis functions, the inner product in (2.4) can be seen as a sampled convolution, i.e.

〈
∂iψh, ϕ̊h,n

〉
= (∂iψh ∗ ϕ̊h)(x)

∣∣
x=hLn

= 1
h(∂iψ ∗ ϕ̊)(x)

∣∣
x=Ln

.

The latter convolution can be expressed in one of three equivalent forms, (∂iψ ∗ ϕ̊) =

(ψ ∗ ∂iϕ̊) = ∂i(ψ ∗ ϕ̊), which can be easily verified in the Fourier domain. Furthermore,

when ϕ̊ is symmetric (i.e. ϕ̊ = ϕ̊), as is the case with tensor-product centered B-splines on

CC and the rhombic dodecahedral box splines on BCC, this convolution can be simplified

by expanding the dual ϕ̊ in terms of the primal basis functions {ϕ(· − Ln)}n∈Z3 as given

in (1.17) on page 9. The digital derivative filter in (2.4) can then be written as d̊i = (di∗a−1
ϕ ),

where di is obtained from the primal ϕ through

di[n] :=
1

h

(
∂i(ψ ∗ ϕ)

)
(x)
∣∣
x=Ln

, (2.6)

and a−1
ϕ [·] ↔ 1

Âϕ(·)
is obtained from the autocorrelation sequence of ϕ ((1.15) on page 8).

The orthogonal projection scheme (2.3) that approximates the first partial derivative

can now be compactly written as

f iapp(x) =
∑

n

(p1 ∗ f ∗ di ∗ a−1
ϕ )[n]ϕh,n(x). (2.7)
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Observe that di is an FIR filter whereas p1 and a−1
ϕ are IIR filters. In our implementation

(Section 2.5), we perform the filtering in the Fourier domain and therefore, do not need to

explicitly compute the impulse response of the filters p1 and a−1
ϕ . Instead, we make use

of the sampled sequence ψ(Ln) and the autocorrelation sequence aϕ[·] to implement the

convolution in the Fourier domain via a simple division.

CC Lattice

We use order (k+1) tensor-product trivariate B-splines Bk(x) to design the various digital

filters outlined in the previous section. Owing to their separability, the problem boils down

to finding the tensor product of 1D filters as shown below.

We choose V(Z3
h, B

k) and V(Z3
h, B

l) as the approximation spaces for the first and second

stages respectively. The first stage prefilter is given by the samples of Bk at the lattice sites

as given in (2.2). Since the B-splines are symmetric, we use (2.6) to obtain the digital

derivative filter. Owing to the fact that the convolution of two B-splines yields another

B-spline of a higher degree [UAE93], the CC derivative filter takes the form

di[n] =
1
h

(
∂i(B

k ∗Bl)
)
(x)
∣∣
x=n

= 1
h

(
∂iB

k+l+1
)
(n)

= 1
h

´βk+l+1(ni)
∏

j 6=i
βk+l+1(nj).

(2.8)

This filter only needs to be evaluated once, derivative filters for other directions are given

by appropriate permutations. For instance, if d1[n] is known, d2 and d3 are given by

d2[n] = d1[n2, n1, n3], and d3[n] = d1[n3, n2, n1] (2.9)

respectively.

Lastly, the auto-correlation sequence aBl [n] is obtained by sampling (Bl∗Bl) = B2l+1 at

the integers. Thanks to separability, it is conveniently given by aBl [n1, n2, n3] =
∏3
i=1 β

2l+1(ni).

BCC Lattice

In this section, we use a scaled version of the BCC lattice generated by the matrix

H :=
3
√
4B =




−1 1 1

1 −1 1

1 1 −1


 , (2.10)
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where B is as defined in (1.36) on page 16. We denote the generated scaled lattice as H.

Recall that with this scaling, the BCC lattice is a sublattice of Z3 obtained by retaining

those points that have the same parity (coordinates are either all odd or all even). The

Voronoi cell of each lattice site of H is a truncated octahedron having a volume of 4.

The four-directional rhombic dodecahedral box splines proposed by Entezari et al. [EVM08]

(Section 1.3.4 on page 20), generate bases that satisfy the Strang-Fix relations (1.12). Box

splines, in general, have various equivalent definitions that make use of the generating di-

rection vectors either in the spatial domain or in the Fourier domain [dHR93]. Here, we

follow a somewhat different approach by using the projection interpretation of the rhombic

dodecahedral box splines as it allows us to easily extend the B-spline framework to BCC.

A rhombic dodecahedral box spline can also be constructed by projecting a 4D tensor-

product B-spline — dilated by a factor of 2 — along the antipodal axis of the supporting

tesseract [EVM08]. Let y be the 4D column vector y := (x, t)T = (x1, x2, x3, t)
T and R be

the 4D rotation matrix

R :=
1

2
[r1, r2, r3, r4] =

1

2




1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

1 1 1 1




that rotates 4D space so that the antipodal axis of the tesseract is parallel to the t-

axis [EVM08]. We can now define the rhombic dodecahedral box spline of order k (for

even k) as the projection of a 4D tensor-product function consisting of dilated non-centered

B-splines of degree (k/2− 1). We write this as

ϑk(x) :=
1

4

∫ 2k

t=0

4∏

j=1

β
k
2
−1

⊲ (
1

4
rTj y) dt, (2.11)

where k ∈ 2Z+, the length of the antipodal diagonal is 2k, and the leading factor of 1/4

ensures that the box splines are normalized to have an integral of 4 (volume of the Voronoi

cell of H) over their support. This definition of the rhombic dodecahedral box splines is

related to the previous definition (see Section 1.3.4) according to the scaling relationship

ϑk(x) =M
Θk/2(

x
3
√
4
). (2.12)

In contrast to the tensor-product B-splines, k is the approximation order of the box spline

rather than the degree of the constituent B-splines. The support of ϑk is a rhombic dodeca-

hedron that has its 14 vertices at the lattice sites (±k/2,±k/2,±k/2), (±k, 0, 0), (0,±k, 0)
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Table 2.1: Orthogonal projection derivative filters. The filters are grouped according to the
approximation order of the first and second stage basis functions. Sizes for the compact
(FIR) filter di in (2.7), in terms of the number of non-zero filter weights, are shown. The
filters are named according to the degree of the polynomials that make up the basis functions;
on CC, l -trilinear, c-tricubic and q-triquintic; and on BCC, L-linear, Q-quintic and N -nonic

(a) CC

ϕ
B1 B3

ψ

B1 ll

18

B3 cl cc

100 294

B5 ql qc

same as cc 648

(b) BCC

ϕ
ϑ2 ϑ4

ψ

ϑ2
LL

10

ϑ4
QL QQ

52 150

ϑ6
NL NQ

same as QQ 328

and (0, 0,±k). Since the B-splines are piecewise polynomials, the integral in (2.11) can be

analytically evaluated for arbitrary x ∈ R3.

Analogous to the CC case, let us choose the first and second-stage approximation spaces

as V(Hh, ϑ
k) and V(Hh, ϑ

l) respectivly. The first-stage prefilter is related to the samples of

ϑk through (2.2). Like a tensor-product B-spline, ϑk is symmetric and can be represented as

a convolution of lower order box splines. The BCC derivative filter (2.6) therefore becomes

di[n] =
1
h

(
∂i(ϑ

k ∗ ϑl)
)
(x)
∣∣
x=Hn

= 1
h

(
∂iϑ

k+l
)
(Hn),

which, after using (2.11) and the derivative relation in (2.5), simplifies to

di[n] =
1
8h

∫
4(k̃+1)

t=0

4∑

j=0

Rji

´
β
˜

⊲k
(
1
4r

T
j

[
Hn
t

])∏
m 6=j β

k̃
⊲

(
1
4r

T
m

[
Hn
t

])
dt, (2.13)

where k̃ := k+l
2 − 1. The integrand above is also a piecewise polynomial and can be analyt-

ically evaluated. It is easy to verify that the permutation relation (2.9) is also applicable

here.

Finally, the auto-correlation sequence aϑl [·] is obtained by sampling the box spline (ϑl ∗
ϑl) = ϑ2l at the lattice sites of H.

2.4 Applicability Analysis

When working with signals that are either bandlimited or sufficiently over-sampled, the

quality of a filter can be characterized in the Fourier domain in terms of its deviation from
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the ideal filter. On the Cartesian lattice, it is a common practice to design one-dimensional

filters and then extend them to higher dimensions via a tensor product. In this section,

we compare the frequency behavior of some of our derivative filters for the CC lattice. To

simplify the analysis, we focus on those filters that are to be used in combination with the

cubic B-spline (see Table 2.1). A more thorough analysis in terms of a modified Fourier error

kernel similar to the scalar error kernel discussed in Section 1.2.4) is presented in Chapter 3.

Derivatives on the higher dimensional Cartesian lattice are usually computed by using

a one-dimensional derivative filter along a canonical direction. For such a scenario, it is

instructive to compare the frequency profiles of the filters restricted to a univariate setting.

Figure 2.2 shows the response of the 1D versions of our orthogonal projection (OP) filters

qc and cc along with the responses of some other digital derivative filters that are combined

with the prefiltered cubic B-spline. Dutta Roy and Kumar’s filter that is designed to be

maximally linear in the pass-band is inferior to the OP filters which have the best pass-band

behavior. This is to be expected since the OP filters are optimitized for the space spanned

by the cubic B-spline. However, the gain provided by the OP filters comes at the expense

of a deteriorated post-aliasing. Estimating the analytical derivative of the reconstructed

function via second-order central differencing with an ǫ-step (ǫ-cd), fairs similarly in the

pass-band but has the worst post-aliasing performance. This attests the fact that taking

the analytical derivative of the reconstructed function may not be the best choice.

Since non-separable lattices such as the BCC lattice have been shown to improve scalar

reconstruction quality [TMG01,EDM04,MSE+07], we believe that the OP framework when

extended to the BCC lattice should improve gradient reconstruction quality as well.

2.5 Results and Discussion

We followed the recipe presented in Section 2.3 to design gradient estimation filters of

different orders for both the CC and BCC lattices. A summary of our filters is given

in Table 2.1 on page 36. These filters are not compactly supported and therefore not suitable

for on-the-fly computations. Practical implementation is feasible when gradients are pre-

computed, for example, as three separate gradient volumes (one for each component) with

each having the same number of elements as the data volume itself. If all the four volumes

(including the data volume) fit into memory then using these filters will not only yield the

most accurate gradients but will also be efficient; as for every sample we just need to perform
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Figure 2.2: Frequency response of various 1D derivative filters used in combination with
the cubic B-spline. The fourth-order FIR filter (4 non-zero weights) 4-cd [HAM11] (also
see Section 2.6) and the 14 non-zero weight filter of Dutta Roy and Kumar [DK93] (designed
to be maximally linear in the pass band) are combined with the prefiltered cubic B-spline.
ǫ-cd is the analytical derivative of the prefiltered cubic B-spline.

four interpolations (one for the data and three for the gradient). Data streaming techniques

can be employed when storage space is not the limiting factor but RAM is.

In order to efficiently implement the discrete convolution operation in a preprocess-

ing stage, we employed the multidimensional discrete Fourier transform (MDFT) to yield a

gradient volume. On the CC lattice, the MDFT can be evaluated using a tensor product

FFT [FJ05]. The MDFT on the BCC lattice is non-separable, but can still be efficiently

evaluated using the FFT as explained in Chapter 5. We also used the MDFT to prefilter

scalar data when interpolating with either the tricubic B-splines on CC or the quintic box

spline on BCC in order to fully exploit the approximation power. The cost of this prefiltering

step is negligible as compared to the cost of the subsequent rendering operations.

2.5.1 Implementation

We evaluated ray-casting [HJ05] integrals in an iso-surface rendering (ISR) mode. A given

iso-surface is extracted along a ray in the volume using a linear bisection technique and once

the iso-surface is found, the gradient is estimated at that point and shaded accordingly.

Only scalar interpolation is performed during the iso-surface extraction stage. Keeping
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the underlying interpolation filter the same allows us to investigate how the quality of the

rendered images changes as a result of different gradient estimation schemes.

We implemented our volume ray-caster as a single threaded application and ran all our

experiments on an Intel CoreTM2 Duo (2.40GHz on each core) machine with 4GB RAM

running Linux. We also optimized our codes using the following compiler (GCC version

4.4.1) optimization flags:

-march=core2 -O6 -ffast-math -funroll-all-loops -ftree-vectorize.

2.5.2 Synthetic Data

We used the popular synthetic function proposed by ML [ML94]. This function has a

form that allows one to correctly point sample it so as to ensure that there is no aliasing

of the spectrum in the frequency domain. In practice however, one may have little to

no knowledge of the underlying frequency content of a sampled signal, in which case, a

reconstruction that attempts to minimize the L2 norm of the error is a more desirable one.

Furthermore, isosurfaces of the ML function are not closed manifolds and error is introduced

near the boundaries of the sampling window since data outside the window needs to be

fetched to accurately reconstruct the function or its gradient. For these reasons, we also

employed an appropriately modified version of the ML function so that the isosurfaces are

closed manifolds that radiate spherically outwards with increasing isovalue (Figure 2.3).

The resulting function can be written in Cartesian coordinates as

ftest(x) := γ‖x‖ − α cos(2πfm
x3
‖x‖), (2.14)

where x ∈ R3 (x 6= 0) and γ, α and fm are positive real parameters. The cosine frequency

modulation form akin to the ML function can be obtained by expressing the above equation

in spherical coordinates. As x → 0, the oscillation frequency of this function tends to

infinity. Thus, for any finite sampling rate, one can always choose an isosurface that would

be a demanding test for any reconstruction filter.

We point sampled both the ML function and ftest within a (−1, 1)3 window on CC and

BCC lattices. For the ML function, we used the parameters given in [ML94] and sampled

the function on a 41 × 41 × 41 CC grid and on an equivalent 32 × 32 × 64 BCC grid. For

ftest, we used the parameters shown in Figure 2.3 and sampled it on CC and BCC grid sizes

of 101× 101× 101 and 80× 80× 160 respectively.
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Figure 2.3: Isosurfaces of the unsampled synthetic functions. Left, the modified test func-
tion, α = 0.25, γ = 2 and fm = 6, showing the isovalues 0.4 (rendered opaque), 0.5 (green)
and 0.6 (purple). Right, the ML test function, isovalue = 0.5 and other parameters as given
in [ML94].

We performed ISR experiments using both test functions. For the ML function, we chose

an isovalue of 0.5 whereas for ftest, we chose an isovalue of 0.4. We used the analytic form

of the functions to compute isosurface intersections and used the sampled versions solely for

normal estimation. This ensures that the underlying shape of the isosurface is the same for

both lattice types. For the OP filters, the stored gradient volume was used to interpolate

gradients at non-grid points. The interpolation filter used is governed by the basis function

used in the second stage as indicated by the second letter of the filter name (Table 2.1).

Figure 2.4 shows the isosurface of the ML function shaded with different gradient esti-

mation schemes. The second-order compact filters 2-cd and BCD stand for second-order

central differencing (on CC) and box central differencing (on BCC) [HAM11] (see also Sec-

tion 2.6), and are combined with the prefiltered tricubic B-spline and the prefiltered quintic

box spline respectively. Since these filters are compact, they are implemented on the fly

without the need to precompute a gradient volume. Since they are second-order filters,

they do not fully exploit the approximation capabilities of the reconstruction space and

therefore, exhibit undesirable artefacts. The terms ǫ-cd (on CC) and ǫ-CD (on BCC) refer

to estimating the gradient locally at the point of intersection by computing the gradient of

the interpolated function using central differences. The superiority of the BCC lattice is

clearly evident; the BCC filters BCD and NQ do a better job at reconstructing the normals

than their CC counterparts 2-cd and qc. Additionally, we observe that ǫ central differencing

yields better normal estimates as compared to the second order filters 2-cd and BCD. How-

ever, ǫ-CD on BCC gives rise to rippling artifacts which are absent in ǫ-cd on CC. The OP
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(a) 2-cd (b) ǫ-cd (c) qc

(d) BCD (e) ǫ-CD (f) NQ

Figure 2.4: Isosurface of the ML function shaded using different normal estimation schemes;
top row, CC, and bottom row, BCC. The analytic form of the ML function is used to
compute the isosurface and the sampled data is used for normal estimation. To facilitate
comparison, the left half of each image shows the truth. For (b) and (e), ǫ = 0.003.

filters qc and NQ outperform the other filters in their respective categories. With NQ, the

artifacts introduced by ǫ-CD are removed and the appearance of the isosurface is closest to

the truth.

We also used the test functions to quantify the performance of the filters and measured

the RMS l2-norm of the difference between the true gradient and the estimated gradient, as

well as the RMS angular deviation from the truth, on the visible isosurface. The numerical

results are shown Table 2.2 and some of the isosurface renderings of ftest along with the

error distributions are shown in Figure 2.5. Our numerical results corroborate the fact that

the advantages of BCC sampling extend to gradient reconstruction as well. The BCC filters

yield significantly lower RMS error values as compared to their CC cousins. We observe the

same trend quantitatively that we qualitatively saw in Figure 2.4; epsilon central differencing

is better than the second-order filters, and the high quality OP filters are comparable in

accuracy to epsilon central differencing. On the BCC side however, orthogonal projection

seems to have a clear advantage which is further substantiated by the corresponding images
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Table 2.2: RMS length of the error vector (l) and RMS angular deviation (θ in degrees) on
the visible isosurface. The comparison is performed on the 0.4 isosurface of ftest and the
0.5 isosurface of ML. For ftest, ǫ = 0.005 and for ML, ǫ = 0.003. The compact fourth-order
filters 4-cd and OPT16 [HAM11] are combined with the prefiltered tricubic B-spline and
the prefiltered quintic box spline respectively. All images were rendered at a resolution of
800× 800 pixels.

(a) CC

ftest ML
l θ l θ

4-cd 17.9 31.8 2.79 44.1
ǫ-cd 11.9 22.4 1.52 25.7

ll 18.6 34.1 2.76 32.4
cl 17.6 32.2 2.20 29.8
ql 17.4 31.6 2.09 29.9
cc 16.1 27.7 1.78 23.8
qc 15.9 27.6 1.69 24.5

(b) BCC

ftest ML
l θ l θ

OPT16 13.7 17.0 2.42 28.7
ǫ-CD 9.8 12.0 1.61 26.1

LL 15.1 22.9 2.50 29.3
QL 13.1 22.8 1.91 28.0
NL 12.5 22.9 1.80 29.1
QQ 10.5 13.0 1.38 19.4
NQ 9.7 12.5 1.29 21.9

in Figure 2.5. We see no rippling artifacts in QQ and the error image is mostly black.

2.5.3 Real Data

To assess the practical impact of our filters on the visualization of volumetric data, we

rendered isosurface images of the carp and bunny data sets in ISR mode. The original CC

data sets have grid sizes of 512 × 512 × 512 and 512 × 512 × 361 respectively. Figure 2.6

depicts the original high resolution carp’s skull reconstructed with prefiltered tricubic B-

spline interpolation and shaded using the OP filter cc in conjunction with the tricubic B-

spline. Figure 2.7 illustrates the impact of various fourth-order schemes on a downsampled

version of the data set. The top row shows the carp’s skull reconstructed using prefiltered

tricubic B-spline scalar interpolation on a downsampled CC grid and shaded using three

different gradient estimation schemes. The second row analogously shows the results for

a downsampled BCC grid. The images follow the same trend as that in Figure 2.4. The

rippling artifacts that we observed in the case ǫ-CD earlier, can be seen here as well. As

before, the OP filters (qc and NQ) reveal the lost features by strongly enhancing contrast

and high frequency details.

Finally, Figure 2.8 illustrates the result of combining the normal estimation schemes with

second-order trilinear interpolation. We used the high resolution CC bunny data set for this
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(a) 4-cd (b) ǫ-cd (c) cc (d) OPT16 (e) ǫ-CD (f) QQ

Figure 2.5: Reconstructed isosurface of ftest shaded using different gradient estimation
schemes. The top row shows the rendered images as compared to the truth while the
bottom row shows the corresponding error images. The left half of an error image illus-
trates the l2-norm of the error vector where a value of 15 or more is mapped to the brightest
green. The right half illustrates the angular deviation where an angle of 15 degrees or more
is mapped to the brightest orange. For (b) and (e), ǫ = 0.005. OPT16 is a fourth-order
finite-differencing filter that makes use of 16 neighbors on the BCC lattice [HAM11].

purpose. In comparison to 2-cd, the OP filters ll and ql enhance the details significantly

especially in high frequency regions. Subtle features on the surface of the bunny which are

smoothed out in the 2-cd rendition, are more clearly visible. At the same time however,

ringing artifacts due to an imperfect CT reconstruction are also appreciably enhanced. This

suggests that the higher-order OP filters preserve high frequency details and should therefore

be used with caution in the presence of noise.

2.6 Notes

Material presented in this chapter first appeared in our earlier work (see [HAM11]), where

we also undertake the problem of designing FIR filters in the spatial domain using a Taylor

series framework. The discrete derivative filters of Brekelmans et al. [BDHDH08] happen

to be particular solutions of the general solution space in this framework.

For comparison purposes, we have presented the experimental results obtained using

some of the filters obtained using our Taylor series framework. These FIR filters are suitable

for on-the-fly evaluations. However, this gain in efficiency comes at the expense of reduced
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Figure 2.6: An isosurface of the high resolution carp fish data set.

accuracy. The fourth-order filter 4-cd used in conjunction with the prefiltered tricubic

B-spline on the CC lattice has also been investigated by Csébfalvi and Domonkos [CD09].

With compiler optimizations turned on, we observed that quintic box spline evaluation

is fairly similar — if not sometimes marginally faster — to that of tricubic B-spline on Intel

CoreTM2 Duo. However, on AMD OpteronTM, with the same compiler optimizations, we

noticed that quintic box spline evaluation is usually marginally slower than tricubic B-spline

evaluation. On the other hand, with no compiler optimizations, we observed that this fact

is quite the opposite and BCC performs twice faster than CC on both platforms as initially

reported by Entezari et al. [EDM04].

To access Mathematica notebooks that compute the weights for the filters presented

in Table 2.1, please see [HAM11, Supplementary Material].
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0.05, 72.27, 73.86

(a) ǫ-cd

0.37, 72.47, 73.52

(b) 4-cd

0.09, 72.40, 73.52

(c) qc

0.05, 69.72, 71.54

(d) ǫ-CD

0.20, 68.85, 70.65

(e) OPT16

0.07, 69.96, 71.61

(f) NQ

Figure 2.7: Carp data set downsampled to a 160×160×160 CC grid (a-c) and a 126×126×
252 BCC grid (d-f) and prefiltered appropriately for interpolation filters on the respective
grids. Isosurface reconstructed and shaded using tricubic B-spline interpolation on CC and
quintic box spline interpolation on BCC. The timing data (in seconds) indicates the normal
computation time, the scalar interpolation time and the total render time respectively. All
images were rendered at a resolution of 512× 512.

(a) 2-cd (b) ll (c) ql

Figure 2.8: An isosurface of the high resolution bunny data set. Trilinear interpolation is
used for both the scalar data and the gradient.



Chapter 3

Gradient Estimation Revitalized

3.1 Motivation

One of the crucial aspects of volume rendering is the accuracy of normal computation since

it will mask the appearance of a bad interpolation filter [MMMY97a]. Even with a good

underlying scalar interpolation filter, image quality is very sensitive to the type of normal

computation scheme used. Yet, the computation of proper normals remains a very difficult

issue, as we saw in the previous chapter where average angular errors of 20 to 30 degrees

were not uncommon. Therefore, it is crucial to find more accurate and practical ways of

estimating the normal for rendering applications. In this chapter, we shall address both of

these competing goals.

Like our approach in Chapter 2, we employ a direct methodology in which a finite-

difference-like digital filter is combined with a continuous reconstruction kernel. This is

preferable, since all the degrees of freedom can be exploited towards a good estimation of

the true underlying derivative, without being constrained by the reconstruction of the func-

tion itself. Hence, a reconstruction space for the derivative can be specified independent of

the way the scalar function is interpolated. Once the reconstruction space for the derivative

is chosen, e.g. a spline-like space (Section 1.3.3 on page 17), the scheme which determines

a particular continuous function in this space from the available point samples has to be

designed. To that end, a relevant viewpoint to analyse reconstruction is offered by approx-

imation theory. We focus on the approximation order of derivative reconstruction schemes

that governs how the error behaves asymptotically (Section 1.2). To fully exploit the ap-

proximation power of a given reconstruction space, a correction prefilter has to be applied

46
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to the data (see Section 1.2.3 on page 11). The interest of prefiltering for the visualization

community has been recognized [Csé08b,FAVM09] but has not been transposed to derivative

reconstruction so far. A notable exception is the work of Csébfalvi and Domonkos [CD09]

in which they propose FIR derivative prefilters designed to fully exploit the approximation

power of the reconstruction space. Our motivation is similar, however, we depart from

existing approaches to design IIR prefilters with specific properties, either within the OP

framework (Chapter 2) or by designing combinations of interpolation prefilters and finite

differences. Our methodology is generic in the sense that it can be deployed on arbitrary

lattices. It is now a wide-spread result that the BCC lattice outperforms the CC lattice for

visualization tasks [MSE+07,EDM04,NM02,TMG01].

Hence, our main contribution in this chapter is the demonstration that, when recon-

structing the gradient continuously in appropriate shift-invariant spaces with specific pre-

filters, we can obtain normals whose accuracy goes beyond previously known limits. This

quality comes without increase in the computational burden! Even more, the efforts for

obtaining a good normal estimation provide a good function reconstruction at no addi-

tional cost. Incidentally, we break the common belief that the best gradient is obtained by

computing the analytic partial derivatives of the reconstructed function.

Our tool of choice is the recently developed extension of the error kernel of Blu and

Unser [BU99a] (Section 1.2.4 on page 14) that provides a way to accurately quantify the

error between the reconstructed gradient and its true underlying counterpart [CM11].

3.2 Shifted Reconstruction Kernel

The overall quality of the two-stage gradient approximation scheme (Chapter 2) is governed

by the approximation properties of the spaces V(Lh, ψ) and V(Lh, ϕ). In Chapter 2, we

considered the case where all the first-stage derivatives ∂ifapp in the axis aligned direc-

tions are orthogonally projected to the same target space V(Lh, ϕ) generated by a single

reconstruction function ϕ. The target space is chosen so that it fulfills the regularity and

accuracy demands of the application. With the target space fixed, the first-stage auxiliary

space should be chosen to have a higher approximation order so that the gradient of the

first-stage approximation ∇fapp(x) is close to the true gradient ∇f(x).

Using the same space to approximate the function as well as the gradient components

is an attractive design choice from a computational point of view since the same scalar
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interpolation routines can be reused to interpolate the gradient as well. In general however,

other choices are possible both in terms of the directions one chooses to compute derivatives

along, as well as the target space in which each directional derivative is approximated.

Towards this end, let ∂~uf denote the directional derivative of f in the direction ~u. Let ϕi(x)

be the reconstruction function of the target space V(Lh, ϕi) onto which ∂~uifapp is projected.

Our goal is to choose each target space V(Lh, ϕi) such that it minimizes the orthogonal

projection L2 error ‖∂~uifapp −
(
PV(Lh,ϕi)∂~uifapp

)
‖. Note that with this modification, the

ideal scenario that yields zero error, i.e. when ϕi(x) is chosen such that ∂~uifapp ∈ V(Lh, ϕi),
can be easily incorporated in the framework, thus yielding the exact directional derivative

∂~uifapp of the first-stage approximation fapp.

The prospect of finding separate reconstruction spaces V(Lh, ϕi) is an ambitious one

and may not be practically all that advantageous as it would require each component of

the gradient to be reconstructed with a different reconstruction function ϕi(x). However,

if we choose reconstruction functions from the same family for both the first and second

stages, we may be able to exploit the derivative relationships that exist between the two

functions. In that case, the problem of finding separate functions ϕi(x) can be reduced to

finding appropriate shifts of a symmetric reconstruction function ϕ(x).

The above idea is best explained with an example where we use the order-(k+1) tensor-

product B-spline Bk(x) (Section 1.3.4 on page 19) as the first stage reconstruction function

on the s-dimensional Cartesian lattice Zs. The first-stage approximation fapp(x) lies in the

space V(Zs, Bk). Using the derivative relationship of the centered B-splines (see (2.5) on

page 33), it is straightforward to show that ∂ifapp ∈ V(Zs, ϕi), where ϕi(x) is the ideal

second-stage reconstruction function for the i-th partial derivative and is given by

ϕi(x) = βk−1(xi − 1
2)
∏

j 6=i
βk(xj). (3.1)

Instead of the ideal functions ϕi(x), let us choose the second-stage reconstruction functions

to be

Bm
i (x) := βm(xi − 1

2)
∏

j 6=i
βm(xj) = Bm(x− 1

2~ei), (3.2)

where m ≤ k and ~ei represents the unit vector in the i-th Cartesian direction. Thus, Bm
i (x)

is merely a shifted version of the centered function Bm(x) (Figure 3.1a). With this choice,

we conjecture that we obtain a better approximation scheme as compared to our previous

scheme (Section 2.3) that uses the same symmetric function Bm(x) to approximate all the
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gradient components. The shifts ensure that the reconstruction functions remain close to

the ideal. Additionally, they are easy to incorporate into existing interpolation routines as

they are cheaply computed from the same symmetric function Bm(x) simply by shifting the

point at which interpolation is to be perfomed by −1
2 in the direction of the derivative.

−3 −2 −1 0 1 2 3

0

0.6

(a) (b)

Figure 3.1: (a) 1D illustration of the shifted derivative estimation scheme. Instead of using a
centered kernel, e.g. a cubic B-spline β3(x) (solid), to reconstruct the derivative, we propose
to use the shifted version β3(x− 1

2) (dashed). (b) Box splines on the hexagonal lattice are
generated by three direction vectors (indicated as arrows). The support of a fourth-order
box spline is a hexagon formed by the second-nearest neighbors. The directional derivative
of this box spline along a convolution direction is a linear combination of two lower-order
box splines that are shifted along the convolution direction as illustrated.

The box spline MΞ(x) (Section 1.3.4 on page 18) also exhibits an analogous derivative

relationship [dHR93]. If ξ ∈ Ξ, then the directional derivative ∂ξMΞ is given by

∂ξMΞ(x) =MΞ\ξ(x)−MΞ\ξ(x− ξ), (3.3)

where Ξ\ξ is the matrix obtained by removing one occurrence of ξ from Ξ. The directional

derivative is therefore obtained by the backward difference of two lower-order box splines.

If the box spline is symmetric (i.e.
∑

η∈Ξ η = 0), then the lower-order box spline thus

obtained is shifted in the direction ξ as illustrated in Figure 3.1b for the hexagonal lattice

in 2D. Thus, when working with symmetric box splines, we argue that we can obtain a

better approximation scheme if instead of approximating a partial derivative in an axis-

aligned direction using symmetric box splines, we approximate directional derivatives using

the same box spline shifted along the direction of the derivative.

We formalize this notion in the following section by quantitatively analyzing the L2 error

incurred as a result of choosing a shifted second-stage reconstruction function. Hereinafter,
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we collectively refer to both of these gradient estimation strategies as the OP framework.

3.3 Fourier-Domain Error Quantification

3.3.1 Scalar and Derivative Error Kernels

In order to quantitatively assess the error behavior of the OP derivative approximation

framework, we propose to use the error kernel of Blu and Unser [BU99a] (1.31). Condat and

Möller [CM11] have recently extended this result to the Fourier-domain error quantification

of one-dimensional derivatives of any order. Their result can be easily applied to arbitrary

sampling lattices in higher dimensions to yield the following Fourier-domain derivative error

kernel:

El(ω) := Emin(ω) + Âϕ(ω)
∣∣ D̂(ω)

2πılTω
− ˆ̊ϕ

⋆
(ω)
∣∣2

︸ ︷︷ ︸
El

res(ω)

. (3.4)

where Emin(ω) is as defined in (1.31) on page 14, l is a principal direction of the lattice L
and D̂ ↔ d is a discrete filter that is to be applied to the samples of f to yield the directional

derivative approximation:

∂lf(x) ≈ f lapp(x) =
∑

n∈Zd

1

h
(f ∗ d)[n]ϕh,n(x). (3.5)

The averaged L2 error ‖∂lf − f lapp‖ can be predicted — in a manner similar to (1.32) —

according to

ǫf l(h) := 2π

√∫

Rs

∣∣f̂(ω)ılTω
∣∣2El(hω)dω. (3.6)

The derivative error kernel (3.4) has an algebraic form that is very similar to the scalar

error kernel (1.31) on page 14. It is also bounded below by Emin(ω) which suggests that

the derivative approximation error can never be lower than the minimum scalar orthogonal

projection error. The term El
res(ω) can be interpreted as first undoing the directional

derivative operation performed by the filter d effectively yielding an approximation of the

original function f , and then measuring the deviation from the orthogonal projection.

Since we are dealing with point samples, the minimum error approximation scenario is

not realizable. However, for functions that have most of their spectral power contained in

the vicinity of ω = 0, we can still achieve a similar asymptotic error behavior if the filter

d is chosen appropriately. If ϕ is a k-th order reconstruction function, then the minimum
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error kernel satisfies Emin(ω) = O(‖ω‖2k) (Section 1.2.4). Thus, in order to ensure that f lapp

provides a k-th order approximation of ∂lf , we require that El
res(ω) = O(‖ω‖2k) [BU99a,

CM11]. In other words, the derivative filter d should be chosen so that the approximation

scheme matches the orthogonal projection as closely as possible. This boils down to requiring

that

D̂(ω)

2πılTω
= ˆ̊ϕ

⋆
(ω) +O(‖ω‖k), or equivalently, D̂(ω) = 2πılTω ˆ̊ϕ

⋆
(ω) +O(‖ω‖k+1). (3.7)

3.3.2 Assessment of the two-stage OP framework

We restrict attention to the case where derivatives are taken along the principal lattice

directions only. For a symmetric first-stage reconstruction function ψ of the B-spline or box

spline type, the directional derivative ∂liψ in the lattice direction li (i ∈ {1, 2, . . . , s}) is

given by the backward difference of two lower-order spline functions that are centered about

the points −li
2 and li

2 respectively. We therefore choose the second-stage reconstruction

function to be ϕi(x) := ϕ(x− li
2 ), where ϕ is a k-th order function of the spline variety that

is symmetric about the origin. We then orthogonally project the directional derivative of

the first-stage approximation onto the space V(Lh, ϕi).
It is straightforward to verify that the shift carries over to the duals, i.e.

ϕ̊i(x) = ϕ̊(x− li
2 ) ↔ ˆ̊ϕi(ω) :=

ϕ̂(ω)

Âϕ(ω)
exp(−πıliTω). (3.8)

Consequently, the digital derivative filter (2.4), now takes the form

d̊i[n] =
〈
∂liψ, ϕ̊i(· − Ln)

〉
=
(
∂li(ψ ∗ ϕ̊i)

)
(x)
∣∣
x=Ln

=
(
∂li(ψ ∗ ϕ̊)

)
(x)
∣∣
x=Ln+li/2

.
(3.9)

By expressing the dual ϕ̊(x) in terms of a linear combination of the primal functions ϕ1,n(x)

(see (1.17) on page 9), we can write this as

d̊i[n] = (δi ∗ a−1
ϕ )[n],

where δi[n] =
(
∂li(ψ ∗ ϕ)

)
(x)
∣∣
x=Ln+li/2

and a−1
ϕ [n] ↔ 1/Âϕ(ω).

(3.10)

The combined OP directional derivative filter Di that is to be applied to the point samples
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of f (cf. (2.1) and (2.3)) is then given by

Di[n] := (p1 ∗ d̊i)[n] ↔ D̂i(ω) =

∑
n d̊i[n] exp(−2πıωTLn)∑

n ψ(Ln) exp(−2πıωTLn)

=

∑
r∈L◦

(
∂̂liψ(ω − r)ϕ̂(ω − r) exp(πılTi (ω − r))

)

Âϕ(ω)
∑

r∈L◦ ψ̂(ω − r)
.

(3.11)

We can now state the criterion that needs to be satisfied in order to ensure that the approx-

imation has an order of k.

Proposition 1. Let ψ be the first-stage generator whose approximation order is at least k.

Then the resultant filter Di satisfies (3.7) and provides a k-th order approximation of ∂lif

when used in conjunction with ϕi. Furthermore, this result holds true irrespective of the

second-stage shift.

The proof of this proposition is deferred till Chapter 4, where we prove a similar propo-

sition (see Proposition 3 on Page 79).

Thus, in order to guarantee a k-th order approximation of the directional derivative, we

demand that ψ and ϕ be the same k-th order reconstruction functions. In this case, the

first-stage prefilter p1 also serves as an interpolation prefilter for a scalar approximation that

lies in V(L, ϕ). Since all the directional derivative filters di have p1 in common, it only has

to be applied once and the resulting data can be used for both scalar interpolation as well

as gradient estimation as illustrated in Figure 3.2. Higher quality schemes can be obtained

by choosing ψ such that it has an approximation order strictly greater than k. However, we

do not discuss such schemes in this chapter.

3.3.3 A Strategy for Designing Practical Filters

Even though the derivative filters that the OP framework yields are asymptotically optimal,

they are not advantageous from a practical point of view since they have an infinite impulse

response and need to be applied in a preprocessing step resulting in significant storage

overhead. The problem of designing derivative filters can be analyzed entirely using the

derivative error kernel without resorting to a first-stage auxiliary approximation space. Here,

we explore such a strategy that exploits the similarities between the scalar error kernel (1.31)

and the derivative error kernel (3.4) to produce separable filters that are practically more

advantageous.
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f(x)

sampling on L

f [n]
p

int. prefilter

d̊1|r1

dir. der. filter

ϕ(x− l1/2)

reconstruction

d̊2|r2 ϕ(x− l2/2)

d̊3|r3 ϕ(x− l3/2)

f l1app

f l2app

f l3app

∑
i f

li
appl

i

gradient estimation

(∇f)app(x)

ϕ(x)

scalar reconstruction

fapp(x)

Figure 3.2: Overview of the gradient estimation pipeline in R3. The sampled data is pre-
filtered once and can be used for both scalar interpolation as well as gradient estimation.
We use the derivative filters d̊1, d̊2 and d̊3 in the OP framework while r1, r2 and r3 are FIR
filters used for on-the-fly derivative estimation.

In order for a directional derivative filter Di to be asymptotically optimal, it must

satisfy the optimality criterion (3.7). This is tantamount to requiring that the Taylor-series

expansion of the frequency response D̂i(ω) match that of the function 2πıli
Tω ˆ̊ϕ

⋆
(ω) up

to order k + 1 where k is the desired approximation order. Additionally, it is practically

desirable that Di be factorable according to di[n] = (p ∗ ri)[n] ↔ D̂i(ω) = P̂ (ω)R̂i(ω),

where ri depends on the direction of the derivative while p has no such dependence and can

be applied once in a preprocessing stage for all the directions in a manner akin to the OP

framework (Figure 3.2). With these design criteria, (3.7) can be written as

D̂i(ω) = P̂ (ω)R̂i(ω) = ˆ̊ϕ
⋆

i (ω)2πıli
Tω +O(‖ω‖k+1)

=
(
ˆ̊ϕ(ω)

)(
2πıli

Tω exp(πıli
Tω)

)
+O(‖ω‖k+1).

(3.12)

It is obvious that if p satisfies

P̂ (ω) = ˆ̊ϕ(ω) +O(‖ω‖k), (3.13)

and ri satisfies

R̂i(ω) = 2πıli
Tω exp(πıli

Tω) +O(‖ω‖k+1), (3.14)

then the combined filter di satisfies (3.12) as well as the optimality criterion (3.7). The

directional dependence due to the derivative and the shift are completely reflected in the

response of the derivative filter ri making the prefilter p directionally independent.
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An inspection of the scalar residue term Eres(ω) in (1.31) on page 14 reveals that if we

use the symmetric function ϕ to approximate f in the space V(Lh, ϕ), then p also provides

an asymptotically optimal k-th order approximation of f , i.e. P̂ (ω) = ˆ̊ϕ(ω) + O(‖ω‖k)
or equivalently, Eres(ω) = O(‖ω‖2k). An interpolation prefilter that attempts to ex-

actly interpolate the sample values (given by (2.2) on page 32 with ψ = ϕ) satisfies

this condition (Section 1.2.3). Such a prefilter is usually employed anyway to approxi-

mate the scalar function. Combining it with a derivative filter ri that satisfies R̂i(ω) =

2πıli
Tω exp(πıli

Tω) + O(‖ω‖k+1) will therefore guarantee a k-th order approximation.

Higher quality quasi-interpolation prefilters are also possible [CVDV07] and are a topic

of future research.

As for the directional component ri, observe that the substitution ν = li
Tω converts

the multi-dimensional Taylor expansion of the term
(
2πıli

Tω exp(πıli
Tω)

)
into a one-

dimensional expansion of
(
2πıν exp (πıν)

)
in the variable ν. Therefore, it suffices to design

derivative filters in 1D and then extend them to higher dimensions by simply applying the

filter along the lattice direction li. This is an attractive solution for our design goals as we

are interested in keeping the impulse response of ri as short as possible so that it can be

employed on the fly. The resulting overall filtering pipeline is the same as that obtained

through the OP framework as shown in Figure 3.2.

3.3.4 Discussion

Error Behavior in 1D

We illustrate the error behavior of the two scenarios considered above with a 1D example

where the centered reconstruction function is chosen to be a 4-th order cubic B-spline β3(x).

For the OP scenario, the first-stage is also taken to be the cubic B-spline (ψ(x) = β3(x)) and

the derivative is then projected to a second-stage centered cubic B-spline (ϕ(x) = β3(x))

and a shifted cubic B-spline (ϕ(x) = β3(x− 1
2)) yielding the filters cc and cc-s respectively.

For the practical scenario, the FIR derivative filter is obtained by equating Taylor coef-

ficients upto and including terms of order 4 as explained in Section 3.4.1. The case without

the shift is termed pFIR while the one with the shift is termed pFIR-s, where p refers to

the scalar prefilter.

As shown in Figure 3.3, using a shifted reconstruction function leads to better error
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Figure 3.3: The derivative error kernel for various derivative reconstruction schemes designed
for the cubic B-spline.

behavior across the board. The error kernel for the OP filter cc-s closely follows the minimum

error kernel for the cubic B-spline while cc departs significantly around ω = π suggesting

that the use of this filter would lead to corruption of high frequency content. Using a shifted

reconstruction function has a more dramatic impact on the FIR filters as can be clearly seen

from the corresponding error kernels. In comparison to pFIR, pFIR-s vastly improves the

error response making it comparable to the OP filter cc-s.

Finally, we show that simply computing the analytic derivative of the scalar approxi-

mation (pANALYTIC ) is not the best possible choice. The error kernel for this scheme

departs from the minimum sooner as compared to the OP schemes. This should not come

as a surprise since the quality is constrained by the approximation characteristics of the

scalar approximation.

Gradient Reconstruction

So far, we have only discussed how to accurately reconstruct directional derivatives. The

problem of combining the different directional derivatives to estimate the function gradient

deserves some attention.

The column vectors of the generating matrix L of lattice L define a basis for Rs that is not

necessarily orthogonal. The gradient of a function is coordinate-system independent and



CHAPTER 3. GRADIENT ESTIMATION REVITALIZED 56

can be conveniently expressed in a dual (contravariant) basis according to

∇f(x) =
∑d

i=1
(∂lif)(x) l

i, (3.15)

where the dual vectors li are column vectors of the matrix L−T [You92]. Thus, if the

directional derivatives in the principal lattice directions are approximately known, they can

be easily combined to yield an approximation of the function gradient.

3.4 Experimental Validation

In order to validate our proposed shifted schemes, we consider various 4-th order gradient

estimation filters to be used in conjunction with the tricubic B-spline on the CC lattice

and the quintic box spline on the BCC lattice. Both of these reconstruction functions are

known to have an approximation order of 4. We refer the reader to Section 1.3.3 for their

definitions.

3.4.1 Tricubic B-Spline on CC

Recall that the CC lattice Z3 is generated by the 3×3 identity matrix (see (1.36) on page 16).

As we saw in Chapter 2, it is customary to design continuous reconstruction functions and

discrete filters in 1D and then extend them to higher dimensions via a simple tensor product.

Consequently, the filters can be applied in a separable way.

OP Derivative Filters

We consider a 3D extension of the 1D case presented in Section 3.3.4 and choose the first-

stage function to be the centered tricubic B-spline ψ(x) = B3(x) = β3(x1)β
3(x2)β

3(x3).

cc: For the unshifted case, the second stage functions ϕi(x) are all taken to be B3(x)

and the components of the gradient in the three principal directions of Z3 (i.e. the canonical

basis) are orthogonally projected to V(Z3
h, B

3). This case has already been considered in the

previous chapter (see Section 2.3.2 on page 34 as well as Table 2.1 on page 36). The resulting

filters are completely separable and can be obtained by a tensor product of 1D filters. The

first-stage prefilter is given by the samples of β3(x), the auto-correlation sequence is obtained

by sampling β7(x) while the derivative filter δi in (3.10) is given by the samples of dβ7

dx (x)

in the direction of the derivative and by the samples of β7(x) in the other directions.
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cc-s: We introduce a shift in the second stage and choose the reconstruction functions

to be ϕi(x) = B3
i (x) (cf. (3.2)). The gradient component in the direction ~ei is then orthog-

onally projected to V(Z3
h, B

3
i ). The first-stage prefilter and the auto-correlation sequence

are the same as the unshifted case cc. Using (3.10), we see that the derivative filter δi is

separable and is given by the samples of dβ
7

dx (x+ 1
2) in the direction ~ei and by the samples

of β7(x) in the other directions.

Since these are IIR filters, they are efficiently applied to the sampled data in the Fourier

domain via a tensor product extension of the FFT. The result is stored in a gradient compo-

nent volume which is later used during rendering for the purpose of gradient reconstruction.

FIR Derivative Filters

For these schemes, the sampled data is first prefiltered using an interpolation prefilter. This

is also done in a preprocessing step using the FFT and the resulting filtered data is used

for all subsequent operations. Coefficients needed for reconstructing a partial derivative are

computed on the fly using a 1D FIR filter that is aligned in the direction of the derivative.

pFIR: For this case, the centered function B3(x) is used to reconstruct gradient com-

ponents. We choose an antisymmetric 1D derivative filter with weights [b, a, 0,−a,−b]. The
derivative criterion (3.14) reduces to

2ı(a sin(2πω) + b sin(4πω)) = 2πıω +O(ω5). (3.16)

Expanding both sides and equating coefficients, the solution is found to be a = 2/3 and

b = −1/12. This is the same as the filter 4-cd filter developed using our spatial domain

Taylor-series framework [HAM11] (also see Figure 2.2 on page 38).

pFIR-s: This is analogous to the case cc-s in the sense that the shifted function B3
i (x)

is used to reconstruct the partial derivative in the direction ~ei. Let us take the unknown

filter weights to be [l2, l1, c, r1, r2]. The derivative criterion (3.14) boils down to

c+ e−4πıω(r2 + r1e
2πıω + l1e

6πıω + l2e
8πıω) = 2πıωeıπω +O(ω5). (3.17)

Equating Taylor coefficients on both sides leads to the solution [− 1
24 ,

9
8 ,−9

8 ,
1
24 , 0].

For the shifted schemes pFIR-s and cc-s, we need to reconstruct the i-th partial derivative

with the shifted basis function B3
i (x). Reconstructing at the point x using the shifted basis

function is equivalent to reconstructing at the point y = x − ~ei/2 with respect to the

centered basis function. Therefore, we simply translate the point of interest by −~ei/2 and
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use the code that implements the centered interpolation scheme. Alternatively, this can also

be regarded as a shift of the underlying grid by ~ei/2.

3.4.2 Quintic Box Spline on BCC

We use a scaled version of the BCC lattice generated by the matrix H = [h1 h2 h3], where

H is as given in (2.10) on page 34. For the definition of the 4-th order quintic box spline

ϑ4(x), please consult (2.11) and (2.12).

OP Derivative Filters

Like the CC lattice, we consider two different cases. For both cases, the first-stage function

is the quintic box spline, i.e. ψ(x) = ϑ4(x).

QQ : The partial derivatives of ϑ4(x) in the canonical directions ~ei are orthogonally

projected to the same target space V(Hh, ϑ
4). This case has also been explored in the

previous chapter (see Section 2.3.2 on page 34 as well as Table 2.1 on page 36). The

constituent filters are non-separable. In particular, the first-stage prefilter is given by the

samples of ϑ4(x) at the lattice sites of H while the auto-correlation sequence is obtained

by sampling the box-spline ϑ8(x). Finally, the derivative filter δi in (3.10) is obtained by

sampling the partial derivative ∂iϑ
8(x) at the lattice sites.

QQ-s: For the shifted case, we take the second stage function to be ϕi(x) = ϑ4i (x) :=

ϑ4(x− 1
2hi) and orthogonally project the first stage derivative in the direction hi to the target

space V(Hh, ϑ
4
i ). The first-stage prefilter and the auto-correlation sequence are unaffected

by the shift and are the same as QQ. The weights of the directional derivative filter δi[n]

are obtained by evaluating ∂hiϑ
8(x) at the sites x = Hn + 1

2hi. The three approximated

directional derivatives are combined according to (3.15) to yield an estimate of the gradient.

Like the CC case, these IIR filters are also applied to the sampled data in a preprocessing

step using our BCC MDFT (Chapter 5).

FIR Derivative Filters

This pipeline proceeds in a manner akin to the CC case above. The sampled data is first

prefiltered for use with the quintic box spline. This is implemented in a preprocessing step

using the BCC MDFT. The prefiltered data is then used to evaluate derivatives on the fly.

We distinguish between two filter types.
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P-OPT26: We use our previously derived error optimal 26 weight filter [HAM11] to

compute derivatives in the canonical directions. The components are all reconstructed with

the centered quintic box spline.

P-FIR-s: We apply the 4 weight shifted FIR filter derived above (cf. (3.17)) to the

prefiltered data along the principal directions hi and use the corresponding shifted quintic

box spline ϑ4i (x) to reconstruct the directional derivative. Analogous to the CC shifted

reconstruction schemes, instead of reconstructing the directional derivative at x, we recon-

struct it at the translated point y = x−hi/2 using the reconstruction code for the centered

quintic box-spline.

3.5 Results and Discussion

In order to assess the impact of our filters on volume visualization, we rendered isosurface

images of the synthetic ML test function using the same parameters as Marschner and

Lobb [ML94](see Figure 2.3 on page 40). We sampled the function on CC and BCC grids of

equivalent resolutions. To effectively discern the effect of a gradient estimation scheme, we

used the analytic form to reconstruct the isosurface but used the sampled data to reconstruct

the gradients according to the different schemes presented in Section 3.4. Figure 3.4 shows

the renditions obtained using the various schemes.

CC vs. BCC: The BCC lattice incurs less errors as compared to the CC lattice. It is

known to be an optimal sampling lattice and produces better scalar reconstructions [TMG01,

EVM08]. It is therefore not surprising that this benefit carries over to gradient reconstruc-

tion as well.

OP vs. Practical: The OP schemes perform better than the FIR schemes both in terms

of angles and magnitudes. This further corroborates our analysis in Section 3.3.4 (see

also Figure 3.3) where we have shown that the OP filters yield lower error kernels.

Shift vs. Centered: The shifted OP filters incur much less magnitude errors as predicted

by the derivative error kernel. However, surprisingly, this trend seems to be reversed when

we consider the angular error distributions. On the other hand, for the FIR filters, the

shifts have a clear advantage. The filters pFIR-s and P-FIR-s lead to lower angular and

magnitude errors as compared to their centered counterparts pFIR and P-OPT26.
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(a) pFIR (b) pFIR-s

Figure 3.5: An isosurface (isovalue = 1000) of the high resolution (5123) aneurysm CC
dataset reconstructed using prefiltered tricubic B-spline interpolation.

Analytic vs. FIR: For the most part, the analytic derivative performs well, specially in

comparison to the centered, orthogonal FIR schemes pFIR and P-OPT26. Undoubtedly, the

IIR OP schemes are better, and even more so when the crucial aspect is the orientation of the

gradient. With the introduction of a shift, the FIR schemes become almost as good as the

analytical gradient in terms of the gradient magnitude. They seem to have an advantage in

terms of the orientation of the gradient. However, this is rather fortuitous since the criterion

optimized by the error kernel is the magnitude and not the orientation.

In order to investigate the effect of the shifted schemes, we experimented with an

aneurysm dataset obtained through an angiography scan. Isosurface renditions of the orig-

inal high resolution CC dataset are shown in Figure 3.5. Even at this resolution, the

differences between the centered and shifted FIR schemes are remarkable, pFIR-s clearly

reveals details that are smoothed out by the centered scheme pFIR.

We downsampled this dataset on equivalent CC and BCC grids and reconstructed the

same isosurface using the gradient estimation schemes outlined in Section 3.4. In order to

ensure that we remain in the low-pass regime, appropriate anti-aliasing filters were applied

in the Fourier domain (using the FFT) before downsampling. To create a BCC volume

downsampled by a factor of 4, we filtered the CC dataset by zeroing out the spectrum outside

a rhombic dodecahedron that is the Voronoi cell of the dual FCC lattice. The resulting CC
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volume was then simply subsampled on a BCC lattice. An equivalent CC volume was created

by discarding the spectrum outside the rectangular region corresponding to the Voronoi cell

of the downsampled CC volume. The resulting images are shown in Figure 3.6. It should

be stressed that the underlying isosurface for each lattice type is the same, since the same

prefiltered reconstruction scheme is used to find the isosurface.

The visual differences between the various CC renditions are subtle. Nevertheless, one

can observe that the OP scheme cc does a better job at preserving the high frequency

details as compared to the FIR scheme pFIR which has the greatest smoothing effect. With

an introduction of a shift, the FIR scheme pFIR-s recovers the lost details and is visually

comparable to the shifted OP scheme cc-s. In contrast to the CC lattice, the BCC lattice

provides a better scalar reconstruction and is more sensitive to the various derivative filter

combinations. As before, the centered FIR scheme P-OPT26 has a strong smoothing effect.

In comparison, the centered OP scheme QQ fares a lot better as shown by the zoomed

in regions of the corresponding images. The greatest improvement is shown by the the

shifted schemes P-FIR-s and QQ-s. They dramatically improve visual quality by revealing

high frequency details and enhancing contrast. We have also compared these renditions

to those obtained by computing the analytic gradient. The visual differences between the

shifted schemes and the analytic gradient are hard to discern, although we did notice that

the shifted OP schemes reproduce edges better and are more accurate in preserving the

gradient magnitude in high frequency regions.

The benefits of the shifted schemes also extend to Direct Volume Rendering (DVR) as

shown in Figure 3.7 for the case of the CC carp dataset. The images obtained by rendering

the downsampled dataset clearly demonstrate the dramatic impact a mere shift can have on

visual quality. Even though several color values are composited to produce a DVR rendering,

the effect of a poor normal estimation scheme persists specially in areas of high variability.

In summary, the shifted OP schemes yield the best results. However, they achieve the

superior visual quality at the expense of an added storage overhead. On the other hand, the

shifted FIR schemes not only yield results that rival those obtained through the shifted OP

schemes, they are also cheap to compute and do not require any changes to the underlying

interpolation kernel as is the case with the analytic gradient. This makes them ideally

suited for practical applications where both efficiency and accuracy are crucial. It should be

emphasized that the scenario we have considered is the bare minimum to guarantee fourth-

order convergence. Both the frameworks considered in Section 3.3 can be easily extended
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Figure 3.7: DVR images of the carp dataset. Left: Original Cartesian (2563) dataset
reconstructed using prefiltered tricubic B-splines and shaded using the analytic gradient.
Middle: Downsampled Cartesian (1283) dataset reconstructed using prefiltered tricubic B-
splines and shaded using the centered scheme pFIR. Right: The middle dataset shaded
using the shifted scheme pFIR-s. Notice how the details in the bones and skull are much
better preserved as compared to the centered scheme even though the underlying scalar
interpolation is the same. This gain in quality comes at no additional cost.

to obtain higher quality filters which can be combined with the tricubic B-spline (CC) or

the quintic box spline (BCC) to further reduce the error.

3.6 Notes

This chapter is largely based on our work [AMC10]. Mathematica notebooks for the com-

putation of the OP filter weights as well as test results using the trilinear B-spline on CC

and the linear box spline on BCC can be found in the supplementary material of this work.

It can be diffult to visually discern the differences between the various rendering in print.

We believe that these differences are best observed by overlaying the images on top of each

other and flipping between them.

The inspiration for the term ‘revitalized ’ comes from the work of Blu et al. [BTU04],

where the authors show that the optimal linear interpolator (one that minimizes the error

kernel (1.31) on page 14) in the univariate setting is actually a shifted one. Our motiva-

tion for using a shifted kernel is somewhat different. However, one could make use of the

derivative error kernel (3.4) to find optimally shifted derivative reconstruction kernels.

The idea of using a shifted generator for approximating derivatives is akin to a staggered

grid-based approach to solving the Navier-Stokes equations, where scalar quantities are

stored at cell centeres while vector quantities are stored at cell faces [HW65,FSJ01,Bri08].

This leads to reduced numerical dissipation when computing the divergence of the flow at

cell centers.



Chapter 4

On the Solution of Poisson’s

Equation in a Rectangular Domain

4.1 Introduction

In this chapter, we build upon the ideas presented in the previous chapters to propose

a method for solving Poisson’s equation with homogeneous Dirichlet boundary conditions

inside the unit hypercube Cs. We follow an approach that is similar to our treatment of

gradient estimation. We first identify the operator that needs to be discretized and then

seek a convolution based solution methodology that is consistent with a chosen target space,

i.e. it fully harnesses the L2 approximation order of the space.

Grid based numerical solutions to elliptic partial differential equations such as Poisson’s

equation are usually studied under the umbrella of finite difference methods [Str04]. Finite

difference methods are designed to guarantee a certain pointwise rate of convergence of the

error. On the other hand, we are interested in seeking an approximate solution Vapp that lies

in a shift-invariant space generated by a kernel ϕ. The relevant error metric is therefore the

L2-norm ‖·‖L2(Cs) and we require that the approximation satisfies ‖V −Vapp‖L2(Cs) = O(hk),

where V is the analytic solution, k is the approximation order provided by ϕ, and h is the

isotropic scaling parameter. In this sense, our solution methodology is reminiscent of the

finite element method [QV08]. The explicit connection is detailed in Section 4.3.3.

65
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4.2 Preliminaries

We shall normalize the domain of interest to the s-dimensional unit cube Cs := [0, 1]s.

We shall be dealing with periodic functions that have their fundamental period in the

domain Ps := [−1, 1]s. We denote the corresponding open domains as Cso := (0, 1)s and

Ps
o := (−1, 1)s respectively.

In a manner similar to (1.7) on page 4, we denote the inner product between two L2(Ps)

functions f1(x) and f2(x) over the domain Ps as (note the absence of complex conjugation)

〈
f1, f2

〉
Ps :=

1

2s

∫

Ps
f1(x)f2(x)dx. (4.1)

The corresponding norm induced by this inner product is indicated as ‖·‖L2(Ps).

We wish to seek an approximation of the function V that satisfies the Poisson equation

with homogeneous Dirichlet boundary conditions, i.e.

∆V = f, in Cso ,
V = 0, on ∂Cs,

(4.2)

where ∆ is the s-dimensional Laplace operator and ∂Cs denotes the boundary of Cs, i.e.
∂Cs ∪ Cso = Cs.

4.2.1 Analytic Solution

Green’s Function

The Poisson equation is an example of a well-studied partial differential equation. When the

domain of interest is the unit cube Cs, the solution can be analytically expressed in terms

of a Green’s function G(x,y) that represents the potential due to a point source placed at

the location x inside Cs. In other words,

∆xG(x,y) = δ(x− y), (4.3)

where δ is the Dirac delta distribution and the Laplacian operates on the x variable. The

Green’s function G has the Fourier Sine series expansion

G(x,y) =
∑

m∈Zs+

∏s
i=1 sin(miπxi) sin(miπyi)

−π2‖m‖2 , (4.4)

and the solution V is given by

V (x) =

∫

Cs
f(y)G(x,y)dy. (4.5)
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Fourier Domain Interpretation

Even though there has been much effort on finding alternate rapidly convergent series rep-

resentations of the Green’s function (see e.g. Marshall [Mar99]), it turns out that the form

of the Green’s function given in (4.4), is ideally suited for our needs as it allows us to easily

express the solution in the Fourier domain in terms of the Fourier coefficients of f .

Suppose we are given an L2(Cs) function ρ(x) that is defined on the open unit cube Cso .
In order to obtain a Fourier sine series that converges to ρ almost everywhere in Cso , we need
to extend ρ periodically such that it is odd with respect to each variable. Particularly, let

us extend the domain of ρ so that, within the interval Ps, it satisfies

ρ(x) :=





(∏s
i=1 sgn(xi)

)
ρ(
∣∣x1
∣∣, . . . ,

∣∣xs
∣∣) if ∀i

∣∣xi
∣∣ 6= 0

0 otherwise,
(4.6)

while outside Ps, it is Ps-periodic, i.e. ρ(x+2k) = ρ(x) for k ∈ Zs. The extended function

ρ can be developed into a multidimensional Fourier sine series, the coefficients of which are

given by

ρ̃[m] = 2s
〈
ρ(x),

∏s
i=1 sin(miπxi)

〉
Ps , for m ∈ Zs+. (4.7)

The coefficient sequence ρ̃[m] can also be seen as a special case of the more general multi-

dimensional Fourier series. In fact, with an odd extension of the sequence ρ̃, the function ρ

can be expressed as a Fourier series. In particular, if we define the Fourier series coefficients

ρ̂[m] (for m ∈ Zs) as

ρ̂[m] :=





1
(2ı)s

∏
i sgn(mi)ρ̃[

∣∣m1

∣∣, . . . ,
∣∣ms

∣∣] if ∀i
∣∣mi

∣∣ 6= 0

0 otherwise,
(4.8)

then ρ is also given by the Fourier series

ρ(x) =
∑

m∈Zs
ρ̂[m] exp(ıπm · x). (4.9)

Thus, we use the notation ρ̃[·] and ρ̂[·] to distinguish between the Fourier sine series and

Fourier series coefficients of the periodic function ρ.

Since the Green’s function G is defined in Cso and has a Fourier sine series representation,

it is natural to seek a solution that can be developed into a Fourier sine series as well.

Consequently, for the remainder of this section, we shall only be dealing with Fourier sine

series. Therefore, it suffices to consider only the coefficients in Zs+.
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Using the analytic solution (4.5) and the sine series representation of the Green’s func-

tion (4.4), it is easy to show that the solution is given by

− Ṽ [m] =
f̃ [m]

π2‖m‖2 , (4.10)

where m ∈ Zs+ and f̃ [·] represents the Fourier sine series coefficients of the odd extension

of f . To facilitate subsequent discussions, let us introduce the solution operator ∆−1 ⇔
1

−π2‖m‖2 (m ∈ Zs+), where the symbol ⇔ represents how the Fourier sine series coefficients

are affected by the operator. The self-adjoint operator ∆−1 is the inverse of the Laplace

operator. Self-adjointness can be easily verified with the aid of Parseval’s relation, which

states that
〈
a, b
〉
Ps =

∑

m∈Zs+

ã[m]b̃[m] (4.11)

for any Ps-periodic functions a and b that are in L2(Ps) and odd.

4.2.2 Approximate Solution

We are interested in the scenario where the function f is only known through its point

samples. Specifically, we assume that the samples of f reside on a scaled version of an

s-dimensional lattice L that is generated by the matrix L. Recall that the lattice L is the

group (under addition) formed by the set of points {Lk : k ∈ Zs}. As before, we denote by

Lh, the scaled lattice generated by the matrix hL. Unless otherwise stated, we assume that

L is normalized, i.e.
∣∣det(L)

∣∣ = 1.

For the purpose of enumerating the samples that are contained within Ps, let us define

the point set

Ph := {x1, . . . ,x2sN}︸ ︷︷ ︸
Ih

∪{x2sN+1, . . . ,x2sN+M}︸ ︷︷ ︸
Bh

, (4.12)

where Ih := Ps
o ∩{x+m : x ∈ Lh ∩Cso ,m ∈ Zs} consists of interior lattice points, while Bh

consists of extended boundary points, i.e. Bh := (Lh ∩ ∂Ps ∩ (−1, 1]s)∪ (Lh ∩Ps
o\Ih). Two

dimensional illustrations are shown in Figure 4.1. We note that with the above definition

of Ih, the points xj for j ∈ {1, . . . , N} are contained in the open unit cube Cso whereas the

remaining points (xj for j ∈ {N+1, . . . , 2sN}) lie outside. Furthermore, we assume that the

lattice L and the sampling rate h are such that the set {x + 2m : x ∈ Ph,m ∈ Zs} = Lh.
We remark that this requirement for Lh is also satisfied by integration lattices that are

commonly used to devise quadrature rules within the unit cube Cs [Nie92].
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(1, 1)

(−1,−1)

(a) Cartesian

(1, 1)

(−1,−1)

(b) Quincunx

Figure 4.1: Illustration of the point set Ph on the two dimensional Cartesian (L =
(
1 0
0 1

)
,

h = 1
8) and Quincunx (L =

(
1 −1
1 1

)
, h = 1

10) lattices. The interior points (•) belong to the
set Ih while the extended boundary points (◦) belong to Bh.

We denote the interior samples of f as f [xj ] := f(xj) where xj ∈ Ih. Note that f [xj ]

only needs to be known in Cso (j ∈ {1, . . . , N}), the other samples can be inferred from

oddity.

We wish to use the samples of f to seek an approximation Vapp of the function V that

solves the Poisson equation (4.2). Since V is a periodic function, we follow the recipe of

Jacob et al. [JBU02] and seek an approximation that lies in a space generated by a periodic

reconstruction function. Specifically, we are interested in the case where Vapp lies in the space

V(Lh, ϕp) := spanxj∈Ph{ϕp(
x−xj
h )} that is spanned by the scaled and translated versions of

a periodic function ϕp. Our sought-after approximation is given by

Vapp(x) =
∑

xj∈Ph
c[xj ]ϕp

(x− xj

h

)
, (4.13)

where c[xj ] is an unknown coefficient sequence defined on the point set Ph that is to be

determined from the samples of f . The function ϕp is a periodized version of a generating

function ϕ (Figure 4.2) and is defined as

ϕp(x) :=
∑

m∈Zs
ϕ
(
x− 2

h
m
)
. (4.14)



CHAPTER 4. THE POISSON EQUATION 70

- 2 - 1 0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) β3(x)

- 20 - 10 0 10 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) β3
p(x)

- 2 - 1 0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) β3
p(
x
h
)

Figure 4.2: 1D illustration of the periodization operation defined by (4.14): ϕ(x) = β3(x)
and h = 0.2.

It is easy to verify that, with this definition of ϕp, Vapp is also Ps-periodic. Even though

we are only interested in the behavior of Vapp inside Cs, extending Vapp to the entire domain

Ps using (4.13) allows us to use the Fourier domain error kernel proposed by Jacob et.

al [JBU02] to quantify the approximation error ‖V − Vapp‖L2(Ps).

Another simplification is in order here. Since the solution V to the Poisson problem (4.2)

is odd with respect to each variable, we look for an approximate solution Vapp ∈ V(Lh, ϕp)
that is also odd in each variable. This can be achieved by setting the boundary coefficients

to zero and by requiring that the resulting sequence be odd. With c[xj ] = 0 for xj ∈ Bh,

the approximation (4.13) simplifies to

Vapp(x) =
2sN∑

j=1

c[xj ]ϕp(
x− xj

h
). (4.15)

If the generator ϕ is even and the sequence c[·] is odd, the resulting approximation Vapp will

also be odd. This can be easily verified by inspecting the Fourier series coefficients of Vapp.

Using the Poisson summation formula (see (1.4) on page 3), the Fourier series coefficients

V̂app[·] are given by

V̂app[m] = ϕ̂(
h

2
m)

2sN∑

j=1

c[xj ] exp(−ıπm · xj), where m ∈ Z
s. (4.16)

Since the coefficient sequence c[·] is odd, the summation in (4.16) can be simplified to yield

V̂app[m] = ϕ̂(
h

2
m)(2ı)sC̃[m], (4.17)

where C̃[m] denotes the multidimensional discrete sine transform (MDST) of the sequence
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c[·] (not to be confused with the Fourier sine series), and is given by

C̃[m] :=
N∑

j=1

c[xj ]
(∏s

i=1 sin(miπxj,i)
)
, where m ∈ Zs. (4.18)

Now, since ϕ̂(ω) is a real even function and C̃[m] is odd, the Fourier series coefficients

V̂app[m] satisfy the odd extension (4.8) with the sine series coefficients being Ṽapp[m] =

(−4)sϕ̂(h2m)C̃[m], for m ∈ Zs+. This establishes the fact that the approximate solution

Vapp is also odd.

With this simplification, the coefficient sequence c[xj ] only needs to be determined for

j ∈ {1, . . . , N}. The rest can be inferred from oddity. In order to obtain c[·] from the

samples f [·], we look for a digital filtering solution that can be efficiently implemented in

the Fourier domain via the MDST. In Section 4.3, we extend the error kernel formulation of

Jacob et al. [JBU02] to analyze the error behaviour of a digital filtering based approximation

methodology. In Section 4.4, we present two digital filtering schemes that can be tuned to

achieve a desired order of accuracy. Some numerical tests in two and three dimensions are

presented in Section 4.5.

4.3 Error Analysis

4.3.1 Error Kernel for Periodic Functions

In many approximation problems involving periodic functions, one is interested in seeking

an approximation zapp of a periodic function z from its measurements that lie on some

sampling lattice. In light of the notations introduced earlier, suppose that z ∈ L2(Ps) and

is also Ps-periodic. Additionally, suppose that the measurements are made at the locations

xj ∈ Ph so that one can obtain an approximation zapp that belongs to V(Lh, ϕp) and — in

a manner similar to the expansion (4.13) — is given by

zapp(x) =
∑

xj∈Ph
ζ[xj ]ϕp(

x− xj

h
), (4.19)

where ϕp is a periodized generating function, and the coefficient sequence ζ[·] is obtained

through the discrete measurements

ζ[xj ] =
〈
z(x), ϕ̃p(

x− xj

h
)
〉
Ps (4.20)
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made with the scaled and shifted versions of a periodic analysis function ϕ̃p(x), where the

periodization operation is similar to (4.14). The main result of Jacob et al. [JBU02] states

that the mean square approximation error ‖z − zapp‖L2(Ps) at scale h can be predicted

according to √ ∑

m∈Zs
‖ẑ[m]‖2E(

h

2
m) (4.21)

where ẑ[m] are the Fourier series coefficients of z and E(ω) is the error kernel of Blu et

al. [BU99a] and is given by

E(ω) := Emin(ω) + Âϕ(ω)
∣∣ ˆ̃ϕ(ω)− ˆ̊ϕ(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

, (4.22)

where the minimum error kernel Emin(ω) is given by (1.31) on page 14. Remarkably, the

same error kernel can be used to predict the error for periodic and non-periodic functions

alike. The only change that needs to be made is in the prediction equation. For functions

in L2(R
s), the error is predicted according to the integral in (1.32). On the other hand, for

periodic functions that belong to L2(Ps), the prediction equation turns into the summation

given in (4.21). We refer the reader to Jacob et al. [JBU02] for details. Recall that the error

kernel (4.22) achieves its minimum value of Emin(ω) when the residue error Eres(ω) = 0, or

equivalently, when the analysis function ϕ̃ is the dual of ϕ. Alternatively, in situations where

the minimum approximation scenario cannot be realized, the residue error kernel provides

a convenient way to get close to the minimum by designing analysis functions ϕ̃ that match

the dual ϕ̊ up to a suitable level that meets the demands of the application.

4.3.2 Extension to Linear Operators

Many a time, we are interested in approximating from the discrete measurements of z, not

the function z itself but a function Γz that is obtained by applying the linear operator

Γ to z. This is exactly the problem we are faced with in the case of approximating the

analytic solution (4.10) to Poisson’s equation. We would like to extend the error kernel

formulation (4.22) so that it will allow us to quantify the error incurred in approximating

Γz from the measurements of z. Towards this end, we assume that the approximation

(Γz)app lies in a shift-invariant space spanned by the generator ϕp, where the coefficients

are obtained from the measurements through a digital filtering operation. Particularly, we
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seek an approximation that is given by

(Γz)app(x) = Ch
∑

xj∈Ph
(ζ ⊛ γh)[xj ]ϕp(

x− xj

h
), (4.23)

where ζ denotes the discrete measurements of z obtained through (4.20), γ is a digital filter

defined on the lattice L and γh is its corresponding scaled version, i.e. γh[xj ] := γ[
xj
h ] where

xj
h ∈ L, and Ch is an associated scaling constant. The digital filter γ represents a suitable

discretization of the operator Γ on the lattice L. It is to be applied to the measurements

through a cyclic convolution operation (denoted by ⊛)on the lattice Lh using a periodized

version of γh. In particular, the convolution operation in (4.23) is defined as

(ζ ⊛ γh)[xj ] :=
∑

xk∈Ph

( ∑

m∈Zs
γ[
xk + 2m

h
]
)
ζ[xj − xk], where xj ∈ Lh. (4.24)

In the above definition, ζ[·] is assumed to be Ps-periodic. Furthermore, the resulting se-

quence (ζ ⊛ γh)[·] is also Ps-periodic.

Let Γ̂(ω) be the Fourier transform of the operator Γ, and Ĝ(ω) be the DTFT of the filter

γ. Furthermore, let Γ be bounded so that Γz ∈ L2(Ps). A simple modification of the mea-

surement process (4.20) yields the desired extension of the error kernel formulation (4.22).

Our main result can be summarised as follows.

Theorem 1. Suppose that Γ is self-adjoint and shift-invariant. The Fourier error kernel

that predicts the approximation error ‖(Γz)app − Γz‖L2(Ps) is given by E(ω) := Emin(ω) +

Emod(ω), where the minimum error kernel Emin(ω) is given in (1.31), while the modified

residue error kernel is given by

Emod(ω) = Âϕ(ω)
∣∣ ˆ̃ϕ(ω)Ĝ(ω)

Γ̂(ω)
− ˆ̊ϕ(ω)

∣∣2. (4.25)

Proof. For the purpose of approximating Γz in the space spanned by the periodic generator

ϕp, we need to analyze Γz in a manner similar to (4.20). Let the analysis function used

to measure Γz be ψ̃p, which is obtained by periodizing the function ψ̃. Let the resulting

coefficient sequence be τ [·], i.e.

τ [xj ] =
〈
(Γz)(x), ψ̃p(

x− xj

h
)
〉
Ps ,

so that the approximation of Γz is (Γz)app(x) =
∑

xj∈Ph τ [xj ]ϕp(
x−xj
h ).
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The error ‖(Γz)app−Γz‖L2(Ps) can thus be predicted according to (4.21) and (4.22) with

the substitutions ẑ → (̂Γz) and ˆ̃ϕ→ ˆ̃
ψ respectively.

Now, since Γ is self-adjoint and shift-invariant, we have

〈
(Γz)(x), ψ̃p(

x− xj

h
)
〉
Ps = Ch

〈
z(x), (Γψ̃)p(

x− xj

h
)
〉
Ps ,

where Ch is some constant depending on the scale h. Thus, measuring Γz with ψ̃p is

equivalent to measuring z with (Γψ̃)p in a distributional sense. We are interested in a

digital filtering solution where τ [xj ] = Ch(ζ ⊛ γh)[xj ]. This can be realized by requiring

that ψ̃ satisfies Γ̂(ω)
ˆ̃
ψ(ω) = ˆ̃ϕ(ω)Ĝ(ω). From here, we infer that

ˆ̃
ψ(ω) =

ˆ̃ϕ(ω)Ĝ(ω)

Γ̂(ω)
and the

result follows.

Note that, even though the operator Γ acts in the space L2(Ps), it is extended to the

more general space L2(R
s) in this error kernel formulation. Therefore, (4.25) can be used to

quantify the L2 error in both L2(R
s) and L2(Ps). Going back to the original problem (4.2),

Theorem 1 gives us a way to design and analyze digital filtering solutions that approximate

the analytic solution (4.10). In particular, the linear operator that we wish to discretize is

∆−1. In the sequel, we show how to use the modified residue error kernel (4.25) to design

filtering schemes that discretize this operator and can be efficiently implemented in the

Fourier domain.

In order to characterize the order of accuracy provided by a periodic generating function

ϕp, we shall switch to the more general space L2(R
s). The link between the approximation

properties of ϕ and those of its periodized version ϕp is established by the error kernel

formulation introduced in the previous section. Since the same kernel can be used in both

cases, henceforth, we shall reason about the approximation properties of the generator ϕ

as the same properties are also applicable to its periodized counterpart ϕp. We use the

notation Ω(ϕ) to denote the approximation order provided by the generator ϕ.

In many approximation scenarios, one typically assumes a Dirac point sampling model,

i.e. ϕ̃(x) = δ(x). This prevents the direct realization of the minimum approximation

scenario. Furthermore, for many functions encountered in practice, the power spectrum is

concentrated around ω = 0. For such scenarios, one speaks of an asymptotically optimal k-th

order approximation scheme if the L2 error behaves as O(hk) where k = Ω(ϕ). Our operator

discretization approach is also based on these assumptions. Provided that V ∈W k
2 (Ps), our

goal is to design suitable digital filters that yield Vapp such that ‖V − Vapp‖L2(Ps) = O(hk).
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As discussed earlier in Section 1.2.4, the criterion that needs to be satisfied is Emod(ω) =

O(‖ω‖2k).

4.3.3 Relationship with the Galerkin Method

The modified residue error kernel (4.25) can also be analyzed in light of the Galerkin

method [QV08] using a weak formulation of the Poisson equation (4.2), where the trial

and test spaces are the same with the notable difference that the spaces are not required

to explicitly satisfy any particular boundary conditions. Rather, a zero boundary condition

is implicitly obtained by requiring that the solution coefficients c[·] be odd as explained

in Section 4.2.2. Here, we establish the connection for the homogeneous case but the analy-

sis also easily extends to the non-homogeneous case, as well as to other types of differential

operators.

In its weak form, the solution V ∈ L2(Ps) to the homogeneous Poisson equation (4.2)

satisfies the weak formulation

〈
V, u

〉
Ps = F(u), ∀u ∈ L2(Ps), (4.26)

where the functions u are suitable test functions. The functional F(·) is defined as F(u) :=
〈
∆−1 f, u

〉
Ps , where f is the odd extension of the function that appears on the right hand side

of (4.2), and the operator ∆−1 ⇔ 1
−π2‖m‖2 has the interpretation of the inverse Laplacian

as introduced in (4.10). We remark that this formulation is slightly stronger than the usual

weak formulations based on the Laplacian ∆ where the trial and test spaces coincide with

the Sobolev space W 1
2 (Ps). In comparison, here the trial and test spaces coincide with

the more general space L2(Ps). This formulation is also in direct correspondence with our

earlier treatment of the problem.

Let us now restrict attention to the finite dimensional space V(Lh, ϕp) ⊂ L2(Ps). We

seek a weak solution Vapp ∈ V(Lh, ϕp) so that

〈
Vapp, uh

〉
Ps = F(uh), ∀uh ∈ V(Lh, ϕp), (4.27)

and the Galerkin residual satifies the orthogonality condition

〈
V − Vapp, uh

〉
Ps = 0, ∀uh ∈ V(Lh, ϕp). (4.28)

From this, it can be deduced that the minimum error approximation Vapp is the orthogonal
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projection of V upon V(Lh, ϕp). The coefficients of the approximation are thus given by

c[xj ] = F(h−sϕ̊(
x− xj

h
)) =

〈
f(x),∆−1(h−sϕ̊(

x− xj

h
))
〉
Ps . (4.29)

Observe that if we use the analysis function ϕ̃p = ∆−1 ϕ̊p (in a distributional sense) in

the measurement equation (4.20), and subsequently employ no filtering (i.e. γ[xj ] = δxj

in (4.23)), then the measurements obtained will realize the orthogonal projection of V upon

V(Lh, ϕp). In this case, the Fourier residue error kernel (4.25) vanishes.

On the other hand, if the point samples of f are already available (i.e. ϕ̃ = δ) and

the orthogonal projection cannot be realized, then the goal of the asymptotically optimal

procedure is to find a suitable correction filter γ such that Emod(ω) = O(‖ω‖2k) where

k = Ω(ϕ). In other words, our approximation procedure attempts to reproduce the Galerkin

orthogonality condition given by (4.28).

4.4 Operator Discretization

The asymptotic optimality criterion amounts to requiring that the residue error kernel

asymptotically behaves like the minimum error kernel, i.e. Emod(ω) ≈ Emin(ω) = O(‖ω‖2k)
around ω = 0. In this section, we consider two discretization models: an interpolative

model that is based on an interpolation prefilter obtained from the samples of ϕ, and

a more accurate two-stage quasi-interpolative model that — like our treatment of gradient

estimation in Chapter 2 — makes use of a higher order auxiliary generator ψ. Both scenarios

yield digital filters that can be readily applied to the samples in the Fourier domain via the

MDST.

4.4.1 Interpolative Model

Suppose that our desired approximation space is spanned by generator ϕ where Ω(ϕ) =

k. From (4.10), the operator that we need to discretize is ∆−1. In order to obtain a

discretization, we make use of the filter P̂ϕ(ω) that is obtained from the samples of ϕ that

lie on the nodes of L. Recall that the inverse filter (P̂ϕ)
−1 is needed to make the generator

ϕ interpolating (see (1.27) in Section 1.2.3).

Let us denote the discretization of ∆−1 on the normalized lattice L as l−1 so that the
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approximate solution on the lattice Lh can be written as

Vapp(x) = h2
2sN∑

j=1

(f ⊛ l−1
h )︸ ︷︷ ︸

c

[xj ]ϕp(
x− xj

h
), (4.30)

where the implied constant Ch = h2. Using the residue error kernel (4.25), the optimality

criterion boils down to requiring that

Âϕ(ω)
∣∣4π2‖ω‖2L̂−1(ω) + ˆ̊ϕ(ω)

∣∣2 = O(‖ω‖2k). (4.31)

In order to arrive at this result, we have extended the operator ∆−1 to L2(R
s) where

∆−1 ↔ (−4π2‖ω‖2)−1. The reason for choosing l−1 as a discretization of ∆−1 will become

apparent in light of the following proposition which gives us a way of reformulating the

problem of designing l−1, a filter that discretizes ∆−1, into a simpler problem of designing

the filter l := (l−1)−1 that discretizes the Laplacian ∆.

Proposition 2. Let the digital filter L̂(ω) be given by the combined filter L̂(ω) = P̂ϕ(ω)Λ̂(ω),

where Λ̂(ω) is a digital filter that satisfies

Λ̂(ω) = −4π2‖ω‖2 +O(‖ω‖k+2). (4.32)

Then the combined inverse filter L̂−1(ω) = (P̂ϕ(ω)Λ̂(ω))−1 provides a k-th order asymptot-

ically optimal discretization of the inverse Laplacian ∆−1.

Proof. From (4.32),

L̂(ω) = P̂ϕ(ω)Λ̂(ω) = −4π2P̂ϕ(ω)‖ω‖2 +O(‖ω‖k+2).

After some rearrangement and using the fact that L̂(ω) = O(‖ω‖2), we obtain

−4π2‖ω‖2
L̂(ω)

=
1

P̂ϕ(ω)
+O(‖ω‖k),

which satisifies the asymptotic optimality criterion (4.31) since we know from Section 1.2.3

that (P̂ϕ(ω))−1 = ˆ̊ϕ(ω) +O(‖ω‖k).

It is not hard to see that this method is essentially a collocation method with respect to

the trial space spanned by the generator ϕp. If we apply the discrete Laplacian filter λ↔ Λ̂

to the coefficients in approximation (4.30), we obtain

(∆Vapp)(x) ≈
2sN∑

j=1

(f ⊛ p−1
ϕ )[xj ]ϕp(

x− xj

h
), (4.33)
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where p−1
ϕ [·] ↔ (P̂ϕ(·))−1. Owing to the fact that p−1

ϕ is an interpolation filter, this ap-

proximation, when evaluated at the lattice sites contained in Cso , will yield the samples of

f .

4.4.2 Quasi-interpolative Model

We now describe a two-stage model that relies on two spaces: a desired target space

V(Lh, ϕp) spanned by the generator ϕp where Ω(ϕ) = k, and an auxiliary space V(Lh, ψp)
spanned by the generator ψp where Ω(ψ) ≥ k. In the first stage, we use the interpola-

tive model from the previous section to seek an auxiliary solution that lies in V(Lh, ψp).
Then, the auxiliary solution is orthogonally projected to the target space V(Lh, ϕp). This

method is similar to our two-stage gradient estimation framework presented in Chapter 2

(see also Figure 2.1 on page 31). Owing to the shift-invariant nature of the spaces, the or-

thogonal projection is tantamount to applying a digital filter to the first-stage approximation

coefficients as described below.

Let us denote the first-stage approximation coefficients as cψ[xj ]. These coefficients are

obtained by applying the discrete operator l−1
ψ to the samples of f as given in (4.30). The

discretization l−1
ψ is obtained from the interpolative model where the interpolation prefilter

pψ is derived from the samples of the first-stage generator ψ. Now, if ψ is chosen to have a

sufficiently high order, then we know that this auxiliary approximation will be very close to

the true solution. Therefore, we can use it to find an approximation in our desired target

space V(Lh, ϕ). In particular, we orthogonally project the auxiliary approximation onto

the target space so as to minimize the L2 error. The orthogonal projection is obtained by

taking inner products of the auxiliary approximation with the lattice translates of ϕ̊p: the

dual of the target space generator ϕp. In particular, the second-stage approximation can be

written as

Vapp(x) =
2sN∑

j=1

(2sN∑

k=1

cψ
〈
ψp(

· − xk

h
), h−sϕ̊p(

· − xj

h
)
〉
Ps
)
ϕp(

x− xj

h
). (4.34)

Assuming that ψ and ϕ are symmetric admissible generators, this is equivalent to the digital

filtering scheme

Vapp(x) =
2sN∑

j=1

(cψ ⊛ qh)[xj ]ϕp(
x− xj

h
), (4.35)
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where the weights of the filter qh are obtained according to

qh[hLk] = q[Lk] := (ψ ∗ ϕ̊)(Lk). (4.36)

Here, (ψ ∗ ϕ̊) denotes the continuous convolution of the two generators ψ and ϕ̊ in L2(R
s).

As we saw in Section 1.2.3, an approximation model is said to be quasi-interpolating

of order k if it is capable of reproducing all multivariate polynomials of degree (k − 1), or

equivalently, Eres(ω) = O(‖ω‖2m) (m ≥ k) where Eres is as defined in (1.31). We retain

the same terminology and say that an approximate solution to the Poisson equation (4.2)

is quasi-interpolating of order k if it satisfies Emod(ω) = O(‖ω‖2m), where m ≥ k. The

following proposition gives us a way of choosing the auxiliary space V(Lh, ψp) so as to

ensure that the resulting approximation (4.35) is quasi-interpolating of order k.

Proposition 3. Let V(Lh, ψp) and V(Lh, ϕp) be the auxiliary and target approximation

spaces respectively, with Ω(ψ) = m and Ω(ϕ) = k. The approximation Vapp obtained through

(4.35) is quasi-interpolating of order k if m ≥ k.

Proof. The modified residue error kernel for this approximation scheme is given by

Emod(ω) = Âϕ(ω)
∣∣4π

2‖ω‖2
L̂ψ(ω)

Q̂(ω) + ˆ̊ϕ(ω)
∣∣2,

where l−1
ψ ↔ 1/L̂ψ denotes the filter obtained from Section 4.4.1 with ψ as the generator.

Given that m ≥ k, we need to show that −4π2‖ω‖2
L̂ψ(ω)

Q̂(ω) = ˆ̊ϕ(ω)+O(‖ω‖n) for some n ≥ k.

Now, from the proof of Proposition 2 we know that −4π2‖ω‖2
L̂ψ(ω)

=
ˆ̊
ψ(ω) + O(‖ω‖m).

Furthermore, using (4.36) and the fact that Ω(ψ) = m and Ω(ϕ) = k, we have Q̂(ω) =

ψ̂(ω) ˆ̊ϕ(ω) +O(‖ω‖m+k). Therefore,

−4π2‖ω‖2
L̂ψ(ω)

Q̂(ω) =
( ˆ̊
ψ(ω) +O(‖ω‖m)

)(
ψ̂(ω) ˆ̊ϕ(ω) +O(‖ω‖m+k)

)

= ψ̂(ω)
ˆ̊
ψ(ω) ˆ̊ϕ(ω) +O(‖ω‖m) = ˆ̊ϕ(ω) +O(‖ω‖m),

since ψ̂,
ˆ̊
ψ and ˆ̊ϕ are all O(1) around ω = 0.

We note that when the auxiliary space is chosen to be the same as the target space, i.e.

when ψ = ϕ, then q[Lk] = δk and this scheme reduces to the interpolative model described

in the previous section.
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4.5 Numerical Experiments

We now present some numerical experiments on the 2D Cartesian lattice (Fig. 4.1a), and

the 3D CC and BCC lattices. Since we are interested in a digital filtering solution, we

first describe a circular convolution scheme for the Cartesian lattice that can be efficiently

implemented in the Fourier domain via a separable MDST. The topic of efficiently imple-

menting the MDST on the BCC lattice is discussed in detail in Chapter 5 (see Section 5.3

on page 95). We then turn to the problem of designing asymptotically optimal filters that

are suitable for use with shift-invariant spaces generated by the tensor product B-splines

(2D and 3D Cartesian) and the rhombic dodecahedral box splines (BCC).

4.5.1 Circular Convolution on the 2D Cartesian Lattice

Since our solution methodology is convolution based, we look for an efficient way to imple-

ment the cyclic convolution operation (4.24) on the 2D Cartesian lattice. Recall that the

cyclic convolution of two periodic sequences in the spatial domain amounts to a pointwise

multiplication of their MDFTs. In our case, the sampled sequence f [xj ] is known only for

the interior points that are contained within the open unit square C2
o (i.e. j ∈ {1, . . . , N}).

The remaining sequence is inferred from oddity. If t is a symmetric filter, then the result

of the convolution will also be odd. It can therefore be computed efficiently by using the

MDST (4.18).

For the 2D Cartesian lattice, it is convenient to enumerate the N points contained within

C2
o as {( j1

M+1 ,
j2

M+1) : 1 ≤ j1, j2 ≤ M} so that N = M2 and h = 1/(M + 1). We also drop

the dependence on M when denoting the sequence f and simply index it as f [j1, j2].

The MDST (4.18) of f can now be written in a separable manner as

F̃ [m1,m2] =
M∑

j1,j2=1

f [j1, j2] sin(π
j1m1

M + 1
) sin(π

j2m2

M + 1
), for 1 ≤ m1,m2 ≤M. (4.37)

The MDST coefficients of the resulting sequence c = (f ⊛ th) can be computed from the

MDST of the sequence f and the DTFT of the filter th according to

C̃[m1,m2] = F̃ [m1,m2]T̂ (
m1

2(M + 1)
,

m2

2(M + 1)
). (4.38)

The resulting sequence c is now given by the inverse MDST of C̃, i.e.

c[j1, j2] =
4

(M + 1)2

M∑

m1,m2=1

C̃[m1,m2] sin(π
j1m1

M + 1
) sin(π

j2m2

M + 1
), (4.39)
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for 1 ≤ j1, j2 ≤M . The remaining sequence is inferred from oddity. Since the MDST (4.37)

is a tensor product of type-I DSTs [Mar94], it can be implemented efficiently via the

FFT [FJ05]. This recipe also easily extends to the 3D CC lattice.

4.5.2 Filter Design

2D Cartesian Lattice

We now turn to the problem of designing filters that discretize the operator ∆−1 ↔
(−4π2(ω2

1 + ω2
2))

−1, and are to be used in conjunction with the tensor-product B-splines.

Recall that the space V(Z2
h, B

k) generated by Bk(x1, x2) = βk(x1)β
k(x2) (where βk is as

defined in (1.39) on page 19), satisfies the approximation property: Ω(Bk) = k + 1. This

result also extends to the Cartesian lattice in higher dimensions. Consequently, we cover

the 2D case in detail here. The extension to 3D is left to the reader.

For the generator Bk, we are interested in a (k + 1)-th order asymptotically optimal

discretization of the inverse Laplacian ∆−1. According to Proposition 2, we need the two

filters pBk and λ.

Since Bk is a compact generator, pBk will also be a compact filter. Furthermore, since

Bk is separable, pBk can be determined by sampling βk(x) to yield the filter pβk [n] = βk(n)

where n ∈ Z. The weights of pBk are then obtained by a simple tensor product, i.e.

pBk [n1, n2] = pβk [n1]pβk [n2] ↔ P̂Bk(ω1, ω2) = P̂βk(ω1)P̂βk(ω2).

As for the filter λ that discretizes ∆, we follow a similar approach and first look for

a symmetric and compact 1D filter λ1 that satisfies the 1D analog of (4.31), i.e. Λ̂1(ω) =

−4π2ω2+O(ωk+3). The unknown filter weights are determined by requiring that the Taylor

developments of (Λ̂1(ω) + 4π2ω2) be zero up to ωk+3. The filter λ ↔ Λ̂ is then given by a

simple addition, i.e. Λ̂(ω1, ω2) = Λ̂1(ω1) + Λ̂1(ω2).

The sizes of pβk and λ1 obviously depend on the degree k. The filters used in our

experiments are tabulated in Table 4.1.

Quasi-Interpolation. For the quasi-interpolative model, we need the additional filter

q (4.36). Choosing ψ to be the tensor product B-spline Bl where l > k, the weights of

q are given by the tensor product of the 1D filter q1[n] := (βl ∗ β̊k)(n) with itself. Using

the recursive definition of the 1D B-splines, q1 can be further split as q1[n] = (w1 ∗ a−1
βk

)[n]

where w1[n] := βk+l+1(n) and a−1
βk

[·] ↔ 1
Â
βk

(·) . Example filter weights for the case l = 5 are

provided in Table 4.1.
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Table 4.1: The various 1D filters to be used in conjunction with bilinear and bicubic ap-
proximation.

V(Z2
h, B

1) V(Z2
h, B

3)
Interp. Interp. Quasi. (l = 5)

pβk [n] δn [ 1
6

2
3

1
6
] [ 1

120
13
60

11
20

13
60

1
120

]

P̂βk ( ν2π ) 1 1
3
(2 + cos(ν)) 1

60
(33 + 26 cos(ν) + cos(2ν))

λ1[n] [1 −2 1] [−1
12

4
3

−5
2

4
3

−1
12

] [ 1
90

−3
20

3
2

−49
18

3
2

−3
20

1
90
]

Λ̂1(
ν
2π

) −2 + 2 cos(ν) 2
3
(−7 + cos(ν)) sin2( ν

2
) 2

45
(−111 + 23 cos(ν)− 2 cos(2ν)) sin2( ν

2
)

w1[n] [ 1
362880

251
181440

913
22680

44117
181440

15619
36288

· · · ]
Ŵ1(

ν
2π

) 1
181440

(78095+88234 cos(ν)+14608 cos(2ν)+502 cos(3ν)+cos(4ν))

aβk [n] [ 1
5040

1
42

397
1680

151
315

397
1680

1
42

1
5040

]

Âβk ( ν2π )
1

2520
(1208+1191 cos(ν)+120 cos(2ν)+cos(3ν))

BCC Lattice

For convenience, we work with the (scaled) BCC lattice H that is generated by the matrix H

given by (2.10) on page 34, and employ the rhombic dodecahedral box splines as generators.

Recall that box spline ϑk, as defined by (2.11) on page 35, satisfies Ω(ϑk) = k (for even k)

with respect to the space V(Hh, ϑ
k).

The operator we wish to discretize is ∆−1 ↔ −4π2(ω2
1 + ω2

2 + ω2
3)

−1. According

to Proposition 2, we need the combined filter (pϑk ∗ λ) where λ ↔ Λ̂ satisfies (4.32), i.e.

Λ̂(ω) = −4π2‖ω‖2+O(‖ω‖k+2). The compact filter pϑk is non-separable and is determined

by the samples of ϑk, i.e. pϑk [xj ] = ϑk(xj) where xj ∈ H.

As for the filter λ, observe that

‖ω‖2 = 1

4

4∑

i=1

(θi
Tω)2, (4.40)

where the (scaled) box spline direction vectors θi (i ∈ {1, 2, 3, 4}) correspond to the column

vectors (1, 1,−1)T, (1,−1, 1)T, (−1, 1, 1)T and (−1,−1,−1)T respectively (also see (1.40)

on page 20). Since θi ∈ H, we can re-use the 1D filter λ1[n] from the previous section and

apply it across the directions θi to yield the filter λ. Therefore, λ↔ Λ̂ is given by

Λ̂(ω) =
1

4

4∑

i=1

Λ̂1(θi
Tω), (4.41)

where the 1D filter λ1 ↔ Λ̂1 satisfies Λ̂1(ω) = −4π2ω2 +O(ωk+2).
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Table 4.2 summarizes the various filters that are the BCC analogs of Cartesian filters

listed in Table 4.1.

Quasi-Interpolation. We need the additional filter q as given by (4.36). Choosing ψ to

be the rhombic dodecahedral box spline ϑl where l > k, the weights of q are given by the

BCC samples of (ϑl ∗ ϑ̊k). Like the Cartesian case, q can be split up as q[xj ] = (wb ∗a−1
ϑk

)[xj ]

where wb[xj ] = ϑk+l(xj) and a
−1
ϑk

[·] ↔ 1
Â
ϑk

(·) . The case l = 6 is shown in Table 4.2.

4.5.3 Results

We conducted numerical tests to verify our solution methodology for the various cases

presented in Tables 4.1 and 4.2. We started with a known synthetic function V and used

the samples of its Laplacian f = ∆V inside the unit cube Cs (s ∈ {2, 3}) to obtain the

approximations Vapp for various grid sizes. On the 2D and 3D Cartesian lattices, the grid

size was controlled by an integer parameter M which determines the number of samples

along one dimension; therefore, the total number of interior samples is N = M s, and the

scaling parameter h = 1
M+1 . On the (scaled) BCC lattice Hh, we used the paramter M to

determine the scaling paramter h so that the BCC lattice has roughly M3 interior samples.

The paramter h is given by

h =
1

2Mb

, where Mb = ⌊M + 1
3
√
2

⌋, (4.42)

and the total number of interior samples is N = (Mb − 1)3 +M3
b .

We used a Monte-Carlo procedure to determine the approximation error. In particular,

the error measure used is given by

ǫ2 :=

(
1

T

T∑

i=1

(V (x̄i)− Vapp(x̄i))
2

)1
2

, (4.43)

where the random variable x̄i is uniformly distributed inside the unit cube. This RMS error

measure approximates ‖V − Vapp‖L2(Cs). We also computed the maximum error according

to

ǫ∞ :=
T

max
i=1

∣∣V (x̄i)− Vapp(x̄i)
∣∣, (4.44)

which approximates ‖V − Vapp‖L∞(Cs). For all the 2D experiments, T = 106, while for the

3D experiments T = 107.
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Figure 4.3: Effect of the frequency paramter µ on bilinear approximation

For all our tests, we used the synthetic function

V (x) := sin
(
2πµ

∏s
i=1 sin(πxi)

)
, where s ∈ {2, 3}. (4.45)

This function satisfies zero Dirichlet boundary conditions. The parameter µ can be varied

to control the oscillation frequency and hence the rate of decay of the Fourier spectrum.

2D

Figure 4.3 shows the effect of the frequency parameter µ on the rate of error decay for

the space V(Z2
h, B

1
p) that is generated by the bilinear B-spline B1. All the curves exhibit

a second-order trend, which is the approximation order provided by the bilinear B-spline.

The parameter µ only affects the overall error; it does not affect the asymptotic decay rate.

The L∞-error also exhibits a second-order decay.

Figure 4.4 compares the decay rate associated with nearest-neighbor (V(Z2
h, B

0
p)), bi-

linear (V(Z2
h, B

1
p)), and bicubic (V(Z2

h, B
3
p)) approximation schemes. The nearest-neighbor

approximation scheme is obtained by combining the second-order filters associated with the

bilinear B-spline (Table 4.1) with the Voronoi spline B0. Since Ω(B0) = 1, the nearest-

neighbor scheme exhibits a first-order decay. In contrast, the interpolative bilinear (resp.

bicubic) scheme shows a first (resp. fourth) order decay, and fully exploits the approxima-

tion capabilities provided by B1 (resp. B3). The quasi-interpolative bicubic approximation
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Figure 4.4: Comparison of 2D approximation schemes. The asymptotic approximation order
(as determined from the last two data points) is indicated.

scheme has a decay rate that is comparable to the interpolative bicubic approximation

scheme. However, the overall error is much lower due to the higher order of the first stage

approximation space. The L∞-error curves exhibit a similar trend as their L2 counter-

parts which suggests that our approximation methodology can also be extended to other Lp

norms.

Figure 4.4 also shows the results obtained by combining the well-known Collatz sten-

cil [Col60] with Keys’ bicubic interpolation [Key81]. This scheme can be easily cast into

our framework for implementation and analysis purposes. The Collatz stencil Λ provides

an implicit finite difference discretization of ∆. Its DTFT is given by

Λ̂(
ν1
2π
,
ν2
2π

) =
4(−5 + 2 cos(ν1) + 2 cos(ν2) + cos(ν1) cos(ν2))

4 + cos(ν1) + cos(ν2)
. (4.46)

It is easy to check that this filter satisfies (4.32) and provides a fourth-order discretization

of the Laplacian ∆. An interpolation prefilter is not necessary since the Keys’ bicubic

generator is already interpolating. Note that the cost of Keys’ bicubic approximation is

the same as bicubic B-spline approximation since both generators have the same support

size. However, unlike the fourth-order cubic B-spline β3, the Keys’ bicubic generator is only

third-order [BTU01,MU03]. This limits the overall approximation order of the Collatz -

Keys scheme to 3.
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(as determined from the last two data points) is indicated.

3D

We also compared the approximation capabilities of the CC and BCC lattices using the

tensor-product extensions of the 1D filters listed in Table 4.1 (CC), and the non-separable

3D filters listed in Table 4.2 (BCC). We used a 3D version of the synthetic test function

V as defined in (4.45). Our results are shown in Figure 4.5. Like the 2D experiments, the

nearest-neighbor scheme is obtained by the combining the second-order filter obtained from

an interpolative model, with the corresponding first-order Voronoi spline.

As expected, the Voronoi splines (B0
p on CC and V 0

H,p on BCC) exhibit a first-order

convergence, the trilinear B-spline B1
p on CC and the linear box spline ϑ2p on BCC have a

second-order convergence, while the tricubic B-spline B3
p on CC and the quinitic box spline

ϑ4p on BCC reveal a fourth-order convergence rate. In terms of the L2-error, the BCC lattice

outperforms across the board. The approximation gain also becomes more pronounced as

the order increases. As we saw in 2D, owing to the higher order of the first-stage space, the

quasi-interpolative model reduces the error considerably. These results are also in agreement

with our earlier comparison of these spaces (see Figure 1.3 on page 23). The only exception

is the second-order case where the interpolative BCC model has a slight edge of its CC

counterpart.

The L∞ error decay also follows a similar trend. However, for the second-order spaces,
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there is a remarkable difference between the trilinear B-spline on CC and the linear box spline

on BCC. Linear box spline interpolation on the BCC lattice is equivalent to a barycentric

interpolation over a tetrahedralized BCC grid. As pointed out by Carr et al. [CMS06], such

an interpolation scheme leads to local girdering artifacts which deteriorate the performance

with respect to the L∞ error metric.

4.6 Notes

4.6.1 Relationship between the Modified Residue Kernel and the Deriva-

tive Error Kernel

The modified residue error kernel (see (4.25) on page 73) can also be used to quantify the

error incurred when approximation directional derivatives. Indeed, under a point-sampling

model ( ˆ̃ϕ = 1), if Γ is the directional derivative operator (Γ̂ = 2πılTω) and the filter

d ↔ D̂ is applied to the point samples, (4.25) is equivalent to the residue term El
res in the

derivative error kernel (see (3.4) on page 50) of Condat and Möller [CM11] that was derived

from different principles. Therefore, Theorem 1 also provides an alternate derivation of the

derivative error kernel.

4.6.2 Extensibility

Our solution methodology can also be extended to the non-homogeneous case as well as to

other types of PDEs. We briefly highlight two straightforward extensions.

Non-homogeneous Dirichlet Boundary Conditions

When the boundary conditions are non-homogeneous, the Poisson equation (4.2) becomes:

∆V = f, in Cso ,
V = g, on ∂Cs.

(4.47)

The analytic solution is given by (see Marshall [Mar99])

V (x) =

∫

Cs
f(y)G(x,y)dy +

∫

∂Cs
g(y)

∂G

∂n
(x,y)dS(y), (4.48)

where G is the Green’s function given in (4.4) and ∂G
∂n denotes the derivative of G in the

direction of the outward unit normal. Since ∂G
∂n is always axis-aligned, one can easily obtain
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a Fourier domain expression for the analytic solution and identify the additional operators

that need to be discretized in order to account for the contribution due to the boundary.

However, unlike the homogeneous case, the odd extension of the non-homogeneous case is

discontinuous at the boundary ∂Cs, and some care is needed to avoid Gibb’s oscillations due

to the discontinuity. This is a subject of future research.

Homogeneous Neumann boundary conditions can be handled by changing the sine terms

in the Green’s function (4.4) to cosine terms [Mar99]. Since our solution methodology is

convolution based, we can account for this modification by using the multidimensional

discrete cosine transform (MDCT) instead of the MDST.

Helmholtz Equation

The Helmholtz equation, under periodic boundary conditions, is given by

∆V + α2V = f, in Cs. (4.49)

Expanding both sides in a Fourier series, the solution in the Fourier domain is given by

V̂ [m] =
f̂ [m]

α2 − 4π2ı‖m‖2 , where m ∈ Z
s.

From here, we easily infer that the operator to be discretized is
(
α2−4π2ı‖m‖2

)−1
. Applying

our solution methodology to the discretization of this operator is straightforward. Dirichlet

(resp. Neumann) boundary conditions can be handled by using the MDST (resp. MDCT)

instead of the MDFT.



Chapter 5

Discrete Fourier and Sine

Transforms with Rectangular

Output on the BCC Lattice

5.1 Introduction

This chapter discusses the efficient, non-redundant evaluation of the MDFT on the BCC

lattice. Most applications of the DFT in higher dimensions rely on a tensor-product exten-

sion of a one-dimensional DFT, with the assumption that the underlying data is sampled

on a Cartesian lattice. This extension has the advantage that it allows for a straightforward

application of the FFT [FJ05]. Here, we show that the FFT can also be used to efficiently

compute the MDFT on the BCC lattice. The key idea is to use an axis-aligned window

to truncate and periodize the sampled function which leads to separable transforms. We

exploit the geometry of the BCC lattice and identify a suitable non-redundant rectangular

region in the frequency domain that contains the entire spectrum.

The MDFT has been extended to non-Cartesian lattices. Mersereau provided a deriva-

tion of a DFT for a hexagonally periodic sequence and designed other digital filters suitable

for a 2D hexagonal lattice [Mer79]. Later, the idea was extended to higher dimensions and a

MDFT for arbitrary sampling lattices was proposed [MS83]. Guessoum and Mersereau pro-

posed an algorithm for evaluating the MDFT that has the same computational complexity

as the Cartesian DFT [GM86]. Our approach also yields an evaluation algorithm that has

90
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Figure 5.1: The BCC lattice, a 16 point view. Cosets are indicated by different colors.

the same complexity as the Cartesian DFT. We arrive at this complexity by taking advan-

tage of the Cartesian coset structure that exists within the BCC lattice. This approach can

also be extended to other lattices that have Cartesian cosets — a notable example being

the FCC lattice.

5.2 Discrete Fourier Transform on BCC

Let f ∈ R3 be a periodic function that has a rectangularly shaped fundamental region and

let F̂ (ω) be the DTFT (see (1.14) on page 8) of the finite sequence obtained by restricting

the samples f [n] = f(Ln) to one complete period. The periodic sequence f [n] can then be

represented in a Fourier basis, the coefficients of which are obtained by sampling F̂ (ω) in a

rectangular fashion.

Recall that the (scaled) BCC lattice H is generated by the matrix H as given by (2.10)

on page 34. It can also be built from shifts of a Cartesian sublattice as shown in Figure 5.1.

In particular, samples that lie on the corners of cubes form the sublattice 2Z3. The quotient

group H/2Z3 is isomorphic to Z2, the group of equivalence classes of the integers modulo 2.

Therefore, H can be partitioned into two Cartesian cosets as shown in Figure 5.1.

The BCC lattice with arbitrary scaling is obtained via the sampling matrix hH where h

is a positive scaling parameter. The Voronoi cell is a truncated octahedron having a volume

of
∣∣det(hH)

∣∣ = 4h3. The Voronoi cell of the dual FCC lattice is a rhombic dodecahedron

having a volume of 1
4h3

. Since H has two Cartesian cosets, a sampled sequence can be split

up into two subsequences given by

f0[n] := f(2hIn) and f1[n] := f(2hIn+ hτ ), (5.1)
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where I is the 3×3 identity matrix, τ is the translation vector (1, 1, 1)T and n ∈ Z3. f0[n] is

the sequence associated with the primary coset while f1[n] is associated with the secondary

coset.

5.2.1 Forward Transform

Let us assume that the samples f0[n] and f1[n] within one complete period of f can be

indexed via the set

N := {n ∈ Z
3 : 0 ≤ n1 < N1, 0 ≤ n2 < N2, 0 ≤ n3 < N3}, (5.2)

for some positive integers N1, N2 and N3. This region consists of 2N1N2N3 data points

(i.e. Voronoi cells) and has a total volume of 8N1N2N3h
3. Let N be the diagonal matrix

diag(N1, N2, N3). Since f is periodic, the two subsequences f0[n] and f1[n] also exhibit

Cartesian periodicity, i.e.

f0[n+Nr] = f0[n] and f1[n+Nr] = f1[n], (5.3)

for all n and r in Z3.

This Cartesian periodicity in the spatial domain amounts to a Cartesian sampling in the

Fourier domain. In particular, the DTFT F̂ (ω) is sampled at the frequencies ω = 1
2hN

−1k

yielding the sequence

F̂ [k] =F̂ (ω)
∣∣
ω=

1
2hN

−1k

=
∑

n∈N
f0[n] exp

(−2πı

2h
kTN−12hIn

)
+ f1[n] exp

(−2πı

2h
kTN−1(2hIn+ hτ )

)

=
∑

n∈N

(
f0[n] + f1[n] exp

(
−πıkTN−1τ

))
· exp

(
−2πıkTN−1n

)
,

(5.4)

where k ∈ Z3 is the frequency index vector. The above equation defines a forward BCC

DFT. Since it is a sampled version of the DTFT (1.14) that is periodic on the dual FCC

lattice, it should be invariant under translations that lie on the dual lattice generated by

the matrix (hH)−T = 1
2hG, where

G :=




0 1 1

1 0 1

1 1 0


 . (5.5)
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This property is easily demonstrated as follows. If r ∈ Z3, then after substituting ω =
1
2h(N

−1k +Gr) in (5.4) and simplifying, we get

F̂
( 1

2h
(N−1k +Gr)

)

=
∑

n∈N

(
f0[n] + f1[n] exp

(
−πı(kTN−1 + rTG)τ

))
· exp

(
−2πı(kTN−1 + rTG)n

)

= F̂ [k],

since rTGτ is always even and rTGn is always an integer.

One fundamental period of the BCC DFT is contained within a rhombic dodecahedron

of volume 1
4h3

. The sampling density in the frequency domain is given by
∣∣det( 1

2hN
−1)
∣∣ =

(8N1N2N3h
3)−1. Thus, the fundamental period consists of a total of 2N1N2N3 distinct

frequency samples which is the same as the number of distinct spatial samples.

5.2.2 Inverse Transform

The inverse BCC DFT is obtained by summing over all the distinct sinusoids and evaluating

them at the spatial sample locations. This gives

f0[n] =
1

N

∑

k∈K
F̂ [k] exp

(
2πıkTN−1n

)
(5.6a)

f1[n] =
1

N

∑

k∈K
F̂ [k] exp

(
2πıkTN−1(n+ 1

2τ )
)

(5.6b)

where N = 2N1N2N3 is the number of samples and K ⊂ Z3 is any set that indexes all

the distinct frequency samples. It can be easily verified that both the sequences (5.6a)

and (5.6b) are periodic with periodicity matrix N.

5.2.3 Efficient Evaluation

Since N is diagonal, the summations in (5.4) and (5.6) are separable. This suggests that the

transform can be efficiently computed via the rectangular multidimensional FFT, provided

that a suitable rectangular index set K can be found. Observe that the Cartesian sequence

F̂ [k] is also periodic with periodicity matrix 2N, i.e. F̂ [k + 2Nr] = F̂ [k] for all r ∈ Z3.

Therefore, one way to obtain a rectangular index set is to choose K such that it contains

all the frequency indices within one period generated by the matrix 2N. This consists of a
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Figure 5.2: (Left) Six rhombic dodecahedra contribute to a non-redundant rectangular
region. (Right) Zoomed in view of the non-redundant rectangular region that contains the
full spectrum split into six pieces.

total of
∣∣det(2N)

∣∣ = 4N indices and hence contains four replicas of the fundamental rhombic

dodecahedron.

A non-redundant rectangular index set can be found by exploiting the geometric proper-

ties of the FCC lattice. If we consider the first octant only, 4N samples are contained within

a cube formed by the FCC lattice sites that have even parity. This cube also contains six

face-centered sites. By joining any two axially opposite face-centered sites, we can split the

cube into four rectangular regions such that each region consists of non-redundant samples

only. Six rhombic dodecahedra contribute to such a region as illustrated in Figure 5.2. The

non-redundant region shown is obtained by limiting k to the index set given by

K := {k ∈ Z
3 : 0 ≤ k1 < N1, 0 ≤ k2 < N2, 0 ≤ k3 < 2N3}. (5.7)

This region can further be subdivided into two cubes stacked on top of each other, each

containing N1 × N2 × N3 samples. The forward transform (5.4) can then be evaluated in

the two cubes separately by appropriately applying the Cartesian FFT to the two sequences

f0[n] and f1[n] and combining the results together. After rearranging terms in (5.4), the

forward transform in the bottom cube becomes

F̂0[k] := F̂ [k] =
∑

n∈N
f0[n] exp

(
−2πıkTN−1n

)

+ exp(−πıkTN−1τ )
∑

n∈N
f1[n] exp

(
−2πıkTN−1n

)
,

(5.8)
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where k is now restricted to the set N. Since this equation is valid for all k ∈ Z3, the forward

transform in the top cube can be computed from (5.8) by F̂1[k] := F̂0[k+(0, 0, N3)
T] which

simplifies to

F̂1[k] =
∑

n∈N
f0[n] exp

(
−2πıkTN−1n

)

− exp(−πıkTN−1τ )
∑

n∈N
f1[n] exp

(
−2πıkTN−1n

)
,

(5.9)

for k ∈ N . Both (5.8) and (5.9) are now in a form that permits a straightforward application

of the Cartesian FFT. Since the two equations are structurally similar, only two N1×N2×N3

FFT computations are needed, one for the sequence f1[n] and one for f2[n].

In a similar fashion, the inverse transform (5.6) can be computed using two inverse FFT

computations. Splitting the summations in (5.6) into the two constituent cubes gives

f0[n] =
1

N

∑

k∈N

(
F̂0[k] + F̂1[k]

)
exp
(
2πıkTN−1n

)
, and

f1[n] =
1

N

∑

k∈N

(
(F̂0[k]− F̂1[k]) exp(πık

TN−1τ )
)
· exp

(
2πıkTN−1n

)
.

(5.10)

5.3 Discrete Sine Transform on BCC

5.3.1 Forward Transform

If the Cartesian periodic function f is odd with respect to each variable, the MDFT turns

into a MDST and it suffices to consider only the samples f0[m] and f1[m] that are within the

positive octant of the fundamental period (see (4.18) on page 71). The forward transform

becomes

F̃ [k] =
∑

m∈M
f0[m]

(∏3
i=1 sin(

π

Mi
kimi)

)
+
∑

m∈M
f1[m]

(∏3
i=1 sin(

π

Mi
ki(mi +

1
2))
)
, (5.11)

where k ∈ Z3
+ and the index set M is defined as follows:

M := {m ∈ Z
3 : 0 ≤ m1 < M1, 0 ≤ m2 < M2, 0 ≤ m3 < M3}. (5.12)

Like the BCC DFT, the key to efficiently evaluating this transform is to find a suitable

rectangular region in the Fourier domain that contains all the positive frequencies. Recall

that the spectrum is replicated on the FCC lattice which means that the positive frequencies
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Figure 5.3: (Left) Part of the rhombic dodecahedron that lies in the first octant and contains
positive frequencies. It consists of a cube with three pyramids attached to it. (Right)
Rectangular region obtained from the rhombic dodecahedral tessellation that contains the
positive part of the spectrum split into three pieces.

are contained within that portion of the rhombic dodecahedron that lies in the positive

octant (Figure 5.3). Exploiting the geometry of the rhombic dodecahedral tessellation, all

the positive frequencies are also contained within a rectangular region obtained by limiting

k to the index set

Ks := {k ∈ Z
3
+ : k1 ≤M1, k2 ≤M2, k3 ≤ 2M3}, (5.13)

as shown in Figure 5.3. As before, we split this region into two cubes each containing

M1 ×M2 ×M3 samples. The transform in the bottom cube is given by

F̃0[k] := F̃a[k] + F̃b[k], (5.14)

where

F̃a[k] :=
∑

m∈M
f0[m]

(∏3
i=1 sin(

π

Mi
kimi)

)
, (type-I) (5.15)

F̃b[k] :=
∑

m∈M
f1[m]

(∏3
i=1 sin(

π

Mi
ki(mi +

1
2))
)
, (type-II) (5.16)

and k is restricted to

M+ := {m ∈ Z
3
+ : m1 ≤M1,m2 ≤M2,m3 ≤M3}. (5.17)
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As indicated in (5.15) and (5.16), F̃0[k] can be efficiently computed by adding the type-

I DST of the primary sequence f0[m] and the type-II DST of the secondary sequence

f1[m]1. Analogous to the BCC DFT, the transform in the top cube is given by F̃1[k] :=

F̃0[k + (0, 0,M3)
T] for k ∈ M+. After simplifying, we observe that F̃1[k] can be obtained

by simply reversing the sequences F̃a and F̃b. In particular, we have

F̃1[k1, k2, k3] = −F̃a[k1, k2,M3 − k3] + F̃b[k1, k2,M3 − k3], (k ∈ M+) (5.18)

with the boundary conditions F̃a[k1, k2, 0] = 0 and F̃b[k1, k2, 0] = 0. Thus, only two DST

computations are needed: a type-I DST of f0[·] and a type-II DST of f1[·].
At this point, we would like to point out that the forward transform thus obtained has

some redundancies which we exploit for the purpose of efficiently computing the inverse

transform. Assuming that k ∈ M+, the following can be easily verified by inspecting (5.11):

F̃ [k1, k2, 2M3] = 0 and F̃ [M1,M2, k3] = F̃ [M1,M2, 2M3 − k3]. (5.19)

5.3.2 Inverse Transform

The inverse transform is obtained by summing up the sinusoids and evaluating them at the

spatial locations of the BCC lattice. Thus, we have

f0[m] =
4

M

∑

k∈Ks
F̃ [k]

(∏3
i=1 sin(

π

Mi
kimi)

)
and

f1[m] =
4

M

∑

k∈Ks
w[k]F̃ [k]

(∏3
i=1 sin(

π

Mi
ki(mi +

1
2))
)
,

(5.20)

where M = M1M2M3, m ∈ M, and the weighting sequence w[k] (k ∈ Ks) handles the

redundancy (5.19) and is defined as follows:

w[k1, k2, k3] :=





1
2 if k1 =M1, k2 =M2 and k3 6=M3,

1 otherwise.
(5.21)

As before, in order to efficiently evaluate the inverse transform, we distribute the evaluation

over the constituent sequences F̃0[k] and F̃1[k] (k ∈ M+). The primary sequence f0[·] is
given by

f0[m] =
4

M

∑

k∈M+

(F̃0[k]− F̃1[k1, k2,M3 − k3])
(∏3

i=1 sin(
π

Mi
kimi)

)
, (type-I) (5.22)

1For the definitions of the various types of the DST, please see the work of Martucci [Mar94].
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where m ∈ M and we use the boundary condition F̃1[k1, k2, 0] = 0. Likewise, the secondary

sequence f1[·] is given by

f1[m] =
4

M

∑

k∈M+

w[k](F̃0[k] + F̃1[k1, k2,M3 − k3])
(∏3

i=1 sin(
π

Mi
ki(mi +

1
2))
)
, (type-III)

(5.23)

where m ∈ M and we use the boundary condition F̃1[k1, k2, 0] = F̃0[k1, k2,M3]. As indi-

cated, (5.22) and (5.23) are now in a form that permits the straightforward use of a type-I

and type-III DST respectively.

5.4 Notes

The material covered in Section 5.2 also appears in our work [AM09], where we also investi-

gate the efficient non-redundant evaluation of the MDFT on the FCC lattice. A redundant

version of the BCC DFT has also been proposed by Csébfalvi and Domonkos [CD08].



Chapter 6

Conclusions

We have seen that the high fidelity promised by the BCC lattice extends beyond scalar repre-

sentations. By casting the problem of approximating derived quantities into the framework

of shift-invariant spaces, we have proposed techniques that inherit the approximation prop-

erties of a generating function, thus yielding high quality shift-invariant representations for

the derived quantities. Our processing techniques are entirely convolution based and there-

fore, can be readily implemented in a discrete computational setting. Even though we have

focused on the three-dimensional CC and BCC lattices in our experiments, our formulation,

for the most part, has remained general. Thus, our processing techniques can be easily

extended to other lattices in two and higher dimensions.

6.1 Application Areas

At the outset, we mentioned our brief stint in data acquisition on the BCC lattice [AEM09,

FAVM09]. Based on the results we obtained there as well as the results reported in this

thesis, we are confident that there are many application areas that can be improved simply

by changing the sampling pattern from Cartesian to body-centric. As more and more data

is acquired on the BCC lattice, the processing tools outlined here, as well as their extensions

described below, will become more and more relevant.

In the context of gradient estimation, we have ignored the fact that the gradient of a

scalar function is curl-free. Incorporating this requirement into the shift-invariant formula-

tion poses additional challenges that are worthy of further investigation. On that note, a

99
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related problem is the accurate reconstruction of divergence-free velocity fields for the pur-

pose of flow visualization [HJ05, Part IV]. Particle tracing techniques such as line-integral

convolution [CL93] and stream surfaces [vW93] usually interpolate the vector field in a

component-wise fashion and therefore, do not respect the divergence-free criterion. Further-

more, these techniques usually assume a Cartesian sampling of the velocity field. A careful

treatment that identifies grid-based artifacts and proposes divergence preserving measures

is therefore warranted. This problem is also interesting from the perspective of creating

realistic fluid effects in computer graphics where, inviscid flows are usually simulated using

a semi-Lagrangian advection scheme [Sta99, FSJ01]. Divergence preserving heuristics lead

to reduced numerical viscosity and mass loss [LAF11].

The Poisson solver described in Chapter 4 also has some immediate applications in

computer graphics. The method of projection for solving the incompressible Navier-Stokes

equations yields a Poisson equation [Sta99]. If free-flow boundary conditions are imposed,

it can be accurately solved using our shift-invariant formulation. The Poisson equation also

shows up in gradient domain image-processing [PGB03], as well as surface reconstruction

from range-scan data [KBH06].

The field of diffusion tensor imaging (DTI) is gradually shifting towards the high-angular-

resolution diffusion imaging (HARDI) model [TRW+02] which is capable of discerning cross-

ing neuronal fibres. HARDI tensors are usually reconstructed on a CC lattice but the proper

interpolation of these tensors at non-grid locations is a problem that has received little at-

tention. Furthermore, the use of non-Cartesian lattices in DTI is completely uncharted

territory. The encouraging scalar and gradient reconstruction results we have obtained on

the BCC lattice lead us to believe that the field of DTI can also significantly benefit by

adopting a non-Cartesian model.

6.2 Future Directions

Our focus has largely been on the development of discrete filters that attempt to fully

harness the approximation capabilities of a given generating function. However, the error

kernel formulations (see (3.4) and (4.25)) are more flexible and allow for the possibility

of optimizing the generating function to better approximate the action of a shift-invariant

operator. For instance, we saw in Chapter 3 that a symmetric generator, when shifted in

the direction of the derivative, yields better derivative approximations. However, we shifted
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the generator by the same amount for all the directions. The possibility of finding optimal

shifts for a given symmetric generator is open for future scrutiny.

Despite the data reduction promised by the BCC lattice, the CC lattice remains a

popular choice. One reason for this divide is the fact that most practical visualization

applications follow Shneiderman’s visual information-seeking mantra: “Overview first, zoom

and filter, details on demand” [Shn96]. In volume visualization, the CC lattice easily lends

itself to this mantra since efficient multiscale wavelet representations are readily available.

On the other hand, wavelets on non-Cartesian lattices such as the BCC lattice are relatively

less explored. Such representations are desirable owing to the reduced support size of the

wavelet bases [HJ02]. This can potentially lead to more efficient, yet accurate, multiscale

representations suitable for interactive visualization applications.

Compressed sensing — the notion of taking advantage of the sparsity of a signal in a

transformed domain [CW08] — is gaining quite a bit of attention in many imaging areas.

The optimal sampling paradigm that we have used in this thesis is based on a worst-case

scenario in which the entire isotropic bandwidth is occupied. An interesting idea, albeit in

the univariate setting, is to take advantage of a sparse shift-invariant representation of the

signal [Eld09]. The extension of this idea to higher dimensions and to non-Cartesian lattices

are interesting research directions.

Towards the end of Chapter 1, we saw that the fourth-order quintic box spline on BCC,

despite having a support that is half the size of the tricubic B-spline on CC, achieves a lower

asymptotic constant (see Figure 1.3 on page 23). A natural question therefore arises: What

is the minimum support size for a given order k? On a related note – for the same support

size, which lattice yields the maximum approximation order? In the univariate setting, the

answer to both of these questions is provided by the MOMS framework of Blu et al. [BTU01].

In higher dimensions, we are unaware of any work that attempts to address these questions.

It is conjectured that the minimum support size is the same as the dimensionality of the

polynomial space Πk−1. However, proving this conjecture and finding generators that realize

the minimum support are interesting and challenging open issues.
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[HAM11] Z. Hossain, U. R. Alim, and T. Möller. Toward high quality gradient estimation on regular
lattices. IEEE Transactions on Visualization and Computer Graphics 17 (4):426–439, April
2011. ↑38, 40, 42, 43, 44, 57, 59

[HJ02] B. Han and R. Q. Jia. Quincunx fundamental refinable functions and quincunx biorthogonal
wavelets. Mathematics of Computation 71 (237):165–196, 2002. ↑101

[HJ05] C. D. Hansen and C. R. Johnson. The Visualization Handbook. Referex Engineering.
Butterworth-Heinemann, 2005. ↑38, 100

[HW65] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. Physics of Fluids 8 (12):2182, 1965. ↑64

[JBU02] M. Jacob, T. Blu, and M. Unser. Sampling of periodic signals: A quantitative error analysis.
IEEE Transactions on Signal Processing 50 (5):1153–1159, 2002. ↑15, 69, 70, 71, 72

[Jia95] R. Q. Jia. Refinable shift-invariant spaces: from splines to wavelets. In Approximation Theory
VIII, Vol. 2, pages 403–427. 1995. ↑6

[Jia98] . Approximation properties of multivariate wavelets. Mathematics of Computation 67
(222):647–666, 1998. ↑7, 26



BIBLIOGRAPHY 105

[JP01] K. Jetter and G. Plonka. A survey on L2-approximation order from shift-invariant spaces. In
Multivariate Approximation and Applications, pages 73–111. 2001. ↑6, 9, 10, 11

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing, pages 61–70. June 2006. ↑100

[KD98] G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for direct
volume rendering. In IEEE Symposium on Volume Visualization, pages 79–86. October 1998.
↑28

[KEP08] M. Kim, A. Entezari, and J. Peters. Box spline reconstruction on the face-centered cubic lattice.
IEEE Transactions on Visualization and Computer Graphics 14 (6):1523–1530, 2008. ↑18

[Key81] R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE Transaction
on Acoustics, Speech, and Signal Processing 29 (6):1153–1160, December 1981. ↑10, 86

[KP10] M. Kim and J. Peters. Symmetric box-splines on the A∗
n lattice. Journal of Approximation

Theory 162 (9):1607–1630, 2010. ↑18
[KP11] . Symmetric box-splines on root lattices. Journal of Computational and Applied Math-

ematics 235 (14):3972–3989, 2011. ↑18
[Kre89] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley Classics Library. Wiley,

1989. ↑4, 9
[KTW06] G. Kindlmann, X. Tricoche, and C.-F. Westin. Anisotropy creases delineate white matter struc-

ture in diffusion tensor MRI. In Ninth International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI ’06), pages 126–133. October 2006. ↑28

[KWTM03] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based transfer functions
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Appendix A

BCC Quasi-interpolation Poisson

Filters

The following filters correspond to the quasi-interpolative case where ψ = ϑ6 and ϕ = ϑ4

(see Table 4.2 on page 84).

A.1 wb

(0, 0, 0) 1 1865002207/16937496576

(1, 1, 1) 8 16154080177/338749931520

(2, 0, 0) 6 1157637193/31757806080

(2, 2, 0) 12 1409618989/127031224320

(3, 1, 1) 24 33424913/7258927104

(2, 2, 2) 8 346906663/112916643840

(4, 0, 0) 6 41079899/36294635520

(3, 3, 1) 24 18196601/63515612160

(4, 2, 0) 24 20701277/84687482880

(4, 2, 2) 24 373289/8065474560

(5, 1, 1) 24 992161/36294635520

(3, 3, 3) 8 211763/19926466560

(6, 0, 0) 6 225221/127031224320

(4, 4, 0) 12 479737/508124897280

(5, 3, 1) 48 83233/254062448640

(4, 4, 2) 24 1651/13028843520

(6, 2, 0) 24 3967/39086530560

(6, 2, 2) 24 1319/203249958912

(5, 3, 3) 24 3089/1016249794560

(7, 1, 1) 24 1627/1016249794560

(4, 4, 4) 8 1/10265149440

(8, 0, 0) 6 1/72589271040

This filter is obtained by sampling the rhombic dodecahedral box spline ϑ10(x) at the

lattice sites of H. The weights are given above. Only the weights for the first octant are

reported. Due to the symmetry of the rhombic dodecahedral box splines, all points obtained
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by the sign flips and permutations of the coordinates, have equivalent weights. The number

of equivalent points is given in the second column.

The closed-form expression for the DTFT Ŵb(
u
2π ,

v
2π ,

w
2π ) (in Matlab R© syntax) is:

(27975033105 + 18522195088.*cos(2.*u) + 575118586.*cos(4.*u) + ...

900884.*cos(6.*u) + 7.*cos(8.*u) + 51571.*cos(2.*(u - 3.*v)) + ...

124207662.*cos(2.*(u - 2.*v)) + 124207662.*cos(4.*u - 2.*v) + ...

51571.*cos(6.*u - 2.*v) + 5638475956.*cos(2.*(u - v)) + ...

479737.*cos(4.*(u - v)) + 18522195088.*cos(2.*v) + 575118586.*cos(4.*v) +...

900884.*cos(6.*v) + 7.*cos(8.*v) + 5638475956.*cos(2.*(u + v)) + ...

479737.*cos(4.*(u + v)) + 124207662.*cos(2.*(2.*u + v)) + ...

51571.*cos(2.*(3.*u + v)) + 124207662.*cos(2.*(u + 2.*v)) + ...

51571.*cos(2.*(u + 3.*v)) + 2.*cos(u).*cos(v).*(39449302405 + ...

3254.*cos(6.*u) + 8722458374.*cos(2.*v) + 2.*cos(4.*u).*(27445949 + ...

665864.*cos(2.*v)) + 54891898.*cos(4.*v) + 2.*cos(2.*u).*(4361229187 + ...

580959504.*cos(2.*v) + 665864.*cos(4.*v)) + 3254.*cos(6.*v)).*cos(w) + ...

2.*(9261097544 + 51571.*cos(6.*u) + (5638475956 + 6595.*cos(6.*u)).*...

cos(2.*v) + 124207662.*cos(4.*v) + 6.*cos(4.*u).*(20701277 + ...

7839069.*cos(2.*v) + 21463.*cos(4.*v)) + 51571.*cos(6.*v) + ...

cos(2.*u).*(5638475956 + 3122159967.*cos(2.*v) + 47034414.*cos(4.*v) + ...

6595.*cos(6.*v))).*cos(2.*w) + 2.*cos(u).*cos(v).*(4108656187 + ...

560037898.*cos(2.*v) + 2.*cos(4.*u).*(329843 + 6178.*cos(2.*v)) + ...

659686.*cos(4.*v) + 2.*cos(2.*u).*(280018949 + 21587470.*cos(2.*v) + ...

6178.*cos(4.*v))).*cos(3.*w) + 2.*(287559293 + 124207662.*cos(2.*v) + ...

479737.*cos(4.*v) + cos(4.*u).*(479737 + 128778.*cos(2.*v) + ...

99.*cos(4.*v)) + 6.*cos(2.*u).*(20701277 + 7839069.*cos(2.*v) + ...

21463.*cos(4.*v))).*cos(4.*w) + 2.*cos(u).*cos(v).*(27117733 + ...

659686.*cos(2.*v) + 2.*cos(2.*u).*(329843 + 6178.*cos(2.*v))).*cos(5.*w)...

+ 2.*(450442 + 51571.*cos(2.*v) + cos(2.*u).*(51571 + ...

6595.*cos(2.*v))).*cos(6.*w) + 3254.*cos(u).*cos(v).*cos(7.*w) + ...

7.*cos(8.*w))/2.5406244864e11;
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A.2 aϑ4

This is the autocorrelation sequence of the quintic box spline ϑ4 and is obtained by sam-

pling ϑ8(x) at the lattice sites of H. The non-redundant filter weights along with their

multiplicities are as follows:
(0, 0, 0) 1 40853/270270

(1, 1, 1) 8 1396301/25945920

(2, 0, 0) 6 3029911/77837760

(2, 2, 0) 12 54889/6486480

(3, 1, 1) 24 9743/3538080

(2, 2, 2) 8 1613/1081080

(4, 0, 0) 6 2383/4864860

(3, 3, 1) 24 719/15567552

(4, 2, 0) 24 659/15567552

(4, 2, 2) 24 59/19459440

(5, 1, 1) 24 167/77837760

(3, 3, 3) 8 1/3706560

(6, 0, 0) 6 1/15567552

The closed-form expression for the DTFT Âϑ4(
u
2π ,

v
2π ,

w
2π ) (in Matlab R© syntax) is:

(1/38918880).*...

(5882832 + 3029911.*cos(2.*u) + 38128.*cos(4.*u) + 5.*cos(6.*u) +...

3295.*cos(2.*(u - 2.*v)) + 3295.*cos(4.*u - 2.*v) + ...

658668.*cos(2.*(u - v)) + 3029911.*cos(2.*v) + 38128.*cos(4.*v) +...

5.*cos(6.*v) + 658668.*cos(2.*(u + v)) + 3295.*cos(2.*(2.*u + v)) +...

3295.*cos(2.*(u + 2.*v)) + 8.*cos(u).*cos(v).*(1882070 + ...

167.*cos(4.*u) + 210584.*cos(2.*v) + cos(2.*u).*(210584 + ...

7190.*cos(2.*v)) + 167.*cos(4.*v)).*cos(w) + (3029911 + ...

1317336.*cos(2.*v) + cos(4.*u).*(6590 + 944.*cos(2.*v)) + ...

6590.*cos(4.*v) + 8.*cos(2.*u).*(164667 + 58068.*cos(2.*v) + ...

118.*cos(4.*v))).*cos(2.*w) + 4.*cos(u).*cos(v).*(207177 + ...

7148.*cos(2.*v) + cos(2.*u).*(7148 + 84.*cos(2.*v))).*cos(3.*w) + ...

2.*(19064 + 3295.*cos(2.*v) + cos(2.*u).*(3295 + 472.*cos(2.*v))).*...

cos(4.*w) + 668.*cos(u).*cos(v).*cos(5.*w) + 5.*cos(6.*w));
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