OPERATOR DISCRETIZATION IN SHIFT-INVARIANT SPACES

USMAN R. ALIM

Department of Computer Science, University of Calgary, Calgary, AB, Canada.
email: ualim@ucalgary.ca

A Shift-invariant space — spanned by the lattice translates of an admissible generating function — is typically used to approximate a function from measurements that lie at the nodes of a lattice. Inspired by the univariate treatment of Blu and Unser [1], we perform a multivariate error analysis of interpolative and quasi-interpolative techniques. This yields a Fourier domain error kernel that can be used to compare the asymptotic performance of different lattice-generator combinations when approximating the same function \(f \). We then analyze the problem of approximating, from the measurements of \(f \), the scalar field \(Lf \), where \(L \) is a differential operator. We focus on approximation techniques that can be expressed as a discrete lattice-based convolution of the measurements with a suitable discretization of \(L \). Our main result is a modified Fourier error kernel that depends on the Fourier transform of \(L \) and the discrete-time Fourier transform of its discretization. We examine two cases in detail: the accurate estimation of the gradient of a function [2, 3], and the approximate solution to Poisson’s equation within a rectangular domain with homogeneous Dirichlet boundary conditions [4]. In either case, we follow a two-stage recipe that yields operator discretizations that are asymptotically optimal. In the first stage, a higher order approximation \(\tilde{f} \) of \(f \) is sought in an auxiliary space. Then, the quantity \(L\tilde{f} \) is orthogonally projected to the target space to yield the desired approximation. Our approximation methodologies are validated by conducting quantitative and qualitative experiments on the three-dimensional Cartesian and body-centered cubic lattices.

REFERENCES

