Comparative Visualizations of Noisy and Filtered Blood Flow from 4D PC-MRI Cardiac Datasets

Fahim Hasan Khan
University of Calgary

Allan Rocha
University of Calgary

Usman Alim
University of Calgary

ABSTRACT
Modern phase-contrast magnetic resonance imaging (PC-MRI) can acquire both cardiac anatomy and flow function in a single acquisition and deliver high quality volumetric and time-varying (4D) datasets which enable better diagnosis and risk assessment of various cardiovascular diseases. A good way to visualize blood flow from 4D PC-MRI datasets is to use animated pathlines through the anatomical context for representing the trajectories of the blood particles. Artifact correction is one crucial step in the processing pipeline of 4D PC-MRI datasets for representing the cardiac flow using pathlines, which in turn can reduce the overall quality of the useful information in the dataset. In this work, an approach is presented for comparative visualization of 4D PC-MRI datasets before and after artifact correction for qualitative analysis.

1 INTRODUCTION
Blood flow analysis has long been used in the evaluation of various cardiovascular diseases. In modern days, the importance of better understanding and knowledge of physiological and pathological blood flow conditions is well-acknowledged and became easier thanks to the advent of various modern medical imaging techniques. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. A good way to visualize blood flow from 4D PC-MRI datasets is to use animated pathlines through the anatomical context for representing the trajectories of the blood particles. Artifact correction is one crucial step in the processing pipeline of 4D PC-MRI datasets for representing the cardiac flow using pathlines, which in turn can reduce the overall quality of the useful information in the dataset. In this work, an approach is presented for comparative visualization of 4D PC-MRI datasets before and after artifact correction for qualitative analysis.

1 INTRODUCTION
Blood flow analysis has long been used in the evaluation of various cardiovascular diseases. In modern days, the importance of better understanding and knowledge of physiological and pathological blood flow conditions is well-acknowledged and became easier thanks to the advent of various modern medical imaging techniques. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. A good way to visualize blood flow from 4D PC-MRI datasets is to use animated pathlines through the anatomical context for representing the trajectories of the blood particles. Artifact correction is one crucial step in the processing pipeline of 4D PC-MRI datasets for representing the cardiac flow using pathlines, which in turn can reduce the overall quality of the useful information in the dataset. In this work, an approach is presented for comparative visualization of 4D PC-MRI datasets before and after artifact correction for qualitative analysis.

1 INTRODUCTION
Blood flow analysis has long been used in the evaluation of various cardiovascular diseases. In modern days, the importance of better understanding and knowledge of physiological and pathological blood flow conditions is well-acknowledged and became easier thanks to the advent of various modern medical imaging techniques. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. A good way to visualize blood flow from 4D PC-MRI datasets is to use animated pathlines through the anatomical context for representing the trajectories of the blood particles. Artifact correction is one crucial step in the processing pipeline of 4D PC-MRI datasets for representing the cardiac flow using pathlines, which in turn can reduce the overall quality of the useful information in the dataset. In this work, an approach is presented for comparative visualization of 4D PC-MRI datasets before and after artifact correction for qualitative analysis.
magnitude and three phase difference images. Each image contains the velocity values in one of the spatial directions x, y and z. From these three components, a 3D velocity vector field V is reconstructed, which forms the basis of all further flow analyses. We have used a simple Gaussian smoothing filter on the flow datasets for creating initial test cases and preliminary results. Because of the generalized nature of our pipeline, any advanced noise and artifact correction technique such as, divergence filters can be used without changing any other step of the overall process.

For cardiac flow analysis in this work, we have considered the aorta and adjacent blood vessels as the region of interest as a large number of medical diagnosis is related to the blood flow through this main blood vessel carrying blood away from the heart to the whole body. The segmentation of the blood vessel is done manually and saved as a binary mask, which has two different applications in our processing pipeline. The first application is to apply the mask to the vector datasets to separate the region of interest, so that the seeding and pathline extraction is only done from inside the boundary of the blood vessel. The second application is using the mask as a geometric surface mesh representing the blood vessel, which is later rendered and visualized as the anatomical context.

For the comparative visualization, we extract pathlines from the original and filtered data. The pathlines are extracted from the vector fields of the 4D PC-MRI data using a high performance parallel implementation of the fourth order Runge-Kutta (RK4) method using general-purpose computing on graphics processing units (GPGPU) programmed in CUDA with C++. As a simple initial seeding strategy, a uniform distribution is used for generating random seed points in the region of interest.

For visualization of the segmented blood vessel, we rendered the geometric surface mesh in a 3D viewer environment implemented using GLSL with C++. For comparative visualization of the blood flow through the aorta, the pathlines extracted using RK4 from both original and filtered datasets are rendered with different styles and animated through the aorta for visualizing the time-varying flow and comparative analysis of uncertainty. The velocity magnitude for each of the flow datasets is represented using a different single-hue colormap for easier comparison and differentiation.

3 Preliminary Results

Our implementation is tested with real 4D PC-MRI data as well as simulated data. Although we tested and obtained results from two sets of real 4D PC-MRI datasets, we are not showing those results here for confidentiality reasons. Real datasets will be used in the final work after completion of ongoing clearance processes. For showing preliminary results, we have used a simulated dataset (blood flow through a vessel with an aneurysm) where the visualization challenges are the same. For simulating the nature of 4D PC-MRI, we have added Rician noise to the simulated blood flow. For domain expert feedback, a number of comparative visualization setups with combinations of different rendering styles is planned and one of these combination is used for the preliminary results. Fig. 2 illustrates the anatomical context of a partial blood vessel with an aneurysm, which is rendered as a surface mesh with a transparent ghost-view and a contour [4]. Then, two different sets of flow are rendered as two different sets of pathlines with distinctive visualization styles in the same anatomical context. This is a convenient setup for the comparative visualization of two different flow data in the same context with full user interaction and camera control. Our design choices are based on the data analysis in this domain as well as visual perception. For extracting the pathlines from the noisy data, we have used four times more seeds than the filtered data as the pathlines from filtered data maintain a more regular flow direction than the noisy data. A thin line representation with a green single-hue colormap is used for pathlines computed from the original noisy data while a thick tube representation with an orange single-hue colormap is used for pathlines obtained from the filtered data. As the original noisy data has more pathlines than the filtered data in this combination, this design choice is selected to use thin lines to represent the more scattered nature of the noisy data and thick tubes to represent the more regular nature of the filtered data. Fig. 2(b) illustrates how the use of distinctive visual cues minimizes the visual interference between the two sets of pathlines thus facilitating the comparison of the flow profiles in an integrated way.

4 Conclusion

This paper presents an ongoing work proposing a novel qualitative analysis approach for comparative visualization of uncertainty and effect of noise and artifact correction on 4D PC-MRI flow datasets, which has the potential to be developed as a very useful visual analysis tool for the medical domain. For completion of this work, we are going to employ recent and more advanced noise and artifact correction techniques in our processing pipeline, improve the design further, create a number of comparative visualization setups and evaluate their effectiveness based on domain expert feedback.

Acknowledgments

This work was supported in part by a grant from the Natural Science and Engineering Research Council of Canada.

References